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Artificial intelligence (AI) models have shown great accuracy in health screening. However, for real-
world implementation, high accuracymay not guarantee cost-effectiveness. Improving AI’s sensitivity
finds more high-risk patients but may raise medical costs while increasing specificity reduces
unnecessary referrals but may weaken detection capability. To evaluate the trade-off between AI
model performance and the long-running cost-effectiveness, we conducted a cost-effectiveness
analysis in a nationwide diabetic retinopathy (DR) screening program in China, comprising 251,535
participants with diabetes over 30 years. We tested a validated AI model in 1100 different diagnostic
performances (presented as sensitivity/specificity pairs) and modeled annual screening scenarios.
The status quo was defined as the scenario with the most accurate AI performance. The incremental
cost-effectiveness ratio (ICER) was calculated for other scenarios against the status quo as cost-
effectiveness metrics. Compared to the status quo (sensitivity/specificity: 93.3%/87.7%), six
scenarios were cost-saving and seven were cost-effective. To achieve cost-saving or cost-effective,
the AI model should reach a minimum sensitivity of 88.2% and specificity of 80.4%. The most cost-
effective AI model exhibited higher sensitivity (96.3%) and lower specificity (80.4%) than the status
quo. In settings with higher DR prevalence and willingness-to-pay levels, the AI needed higher
sensitivity for optimal cost-effectiveness. Urban regions and younger patient groups also required
higher sensitivity in AI-based screening. In real-world DR screening, the most accurate AI model may
not be the most cost-effective. Cost-effectiveness should be independently evaluated, which is most
likely to be affected by the AI’s sensitivity.

Artificial intelligence (AI) has shown a growing potential in early disease
detection through medical image analysis. This ability allows the emersion
of using AI in health screening as an effective solution to address the global

health burden1. Many AI products in this field exhibited high accuracy,
equivalent to or surpassing human experts2–5. One prime example is the
utilization of medical AI in the screening for diabetic retinopathy (DR). A
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plethora of models developed to date exhibit reasonably accurate perfor-
mance, with sensitivity levels ranging from 85% to 95% and specificity
ranging from 74% to 98%6–9.

While high diagnostic performance is crucial, the cost-effectiveness of
AI models holds equal importance in real-world health screening, parti-
cularly in long-running settings. However, this aspect is commonly
underestimated, and the trade-off between diagnostic performance and
cost-effectiveness has not been adequately addressed10. Adjusting AI’s
performance for a high sensitivity can increase themodel’s capacity to detect
high-risk patients but may lead to incremental medical costs, while high
specificity canminimize unnecessary referrals and associated costs but may
compromise the detection capability5,11–13. To evaluate cost-effectiveness
change, previous studies assigned different values to the sensitivity and
specificity of AI models14–16. However, these studies only focused on theo-
retical scenarios where sensitivity and specificity can change independently,
overlooking that in practical screening tools, these two parameters have an
inverse correlation.

Navigating real-world scenarios poses even greater challenges,
underscoring the need for careful consideration in decision-making. The
question remains open whether the best-performingmodel is also themost
cost-effective in real-world screening. Moreover, we still possess limited
evidence on how to choose among the plenty of AI models with fairly good
diagnostic performances from a cost-effective standpoint. Additionally,
regional variations in disease prevalence and the financial capacities of
public healthcare systems may require different performances from AI.
Evidence is warranted to guide the selection of AI models.

In light of these, we conducted a case study on DR screening using
real-world data to investigate whether themost accurate AI is also the best
cost-effective option. Our study focused on China, a large and repre-
sentative low- and middle-income country (LMIC) with an estimated
diabetic population of 141 million adults17. Despite several DR screening
programs that have been conducted in China, the overall uptake rate of
screening remains below 20%, primarily due to limited healthcare
resources and inadequate patient education18. To enhance the efficacy of
DR screening, AI-assisted screening programs have been developed in
pioneering cities15,19. Given the substantial size of the patient population
and the evolving landscape of DR screening, China presents a suitable

context for exploring the general challenge worldwide of the trade-off in
AI model selection.

This study used data from a nationwide DR screening program in
China, the Lifeline Express DR Screening Program. We evaluated the cost-
effectiveness of different DR screening scenarios using a validated AI by
altering its diagnostic performances (presented as sensitivity/specificity
pairs). We also modeled various healthcare scenarios with different pre-
valences of referable DR and economic capacities. The results of this study
are expected to provide evidence to guide the selection and implementation
of AI in real-world DR screening, taking into account both diagnostic
accuracy and cost-effectiveness considerations.

Results
Status quo
Among 251,535 participants from the Lifeline Express, referable DR was
detected in 18,709 (7.44%) participants by human graders. The most
accurate (the status quo) AI model corresponded to a sensitivity of 93.3%
and specificity of 87.7%, yielding an area under curve (AUC) of 0.933
(Supplementary Fig. 1). In the context of the status quo, where the most
accurate AI model provided automatic annual DR screening for a 30-year
span in a 251,535 diabetic population, the economic costs would be US$
1563million.Adiabetic individualwould encounter 9.1689quality-adjusted
life-years (QALYs) over the entire period. Among all 1100 AI model per-
formances, the highest sensitivity/lowest specificity was 99.4%/31.9%, while
the lowest sensitivity/highest specificity was 69.8%/92.6%. Details on the
costs, effectiveness, model thresholds, and performances of the 1100
screening scenarios are listed in Supplementary Table 1.

Main analysis
The selection workflow of the 1100 screening scenarios is presented in
Supplementary Fig. 2. After excluding 1) scenarios exhibiting higher costs
but lower effectiveness compared to the lower-cost scenario; 2) scenarios
with Incremental cost-effectiveness ratio (ICER) higher than the
willingness-to-pay (WTP) threshold; 3) extended dominated scenarios, 14
cost-saving or cost-effective scenarios remained, including the status quo
and13 intervention scenarios.Of these interventional scenarios, 6were cost-
saving and 7were cost-effective compared to the status quo (Table 1). These

Table 1 | Cost-effectiveness of AI-based DR screening with different model performances

Scenarios Sensitivity Specificity Cost per per-
son (US$)

Incr. Cost in 251,535
population (million US$)

Effect per per-
son (QALYs)

Incr. Eff (QALYs in
251,535 population)

ICER
(US$/QALY)

NMB (million
US$)

1 (status quo) a 0.933 0.877 6214 - 9.1689 - - -

2 0.882 0.903 6192 −5.544 9.1630 −1490 3719 −40

3 0.897 0.897 6197 −4.310 9.1648 −1034 4169 −28

4 0.909 0.892 6201 −3.257 9.1663 −664 4908 −17

5 0.919 0.887 6205 −2.245 9.1673 −396 5664 −10

6 0.925 0.884 6208 −1.434 9.1680 −226 6341 −6

7 0.929 0.880 6211 −0.720 9.1685 −98 7377 −2

8 0.936 0.873 6217 0.839 9.1693 99 8467 2

9 0.944 0.863 6225 2.867 9.1702 315 9101 7

10 0.947 0.856 6231 4.228 9.1705 409 10,346 8

11 0.951 0.847 6238 6.088 9.1709 513 11,879 10

12 0.954 0.837 6246 8.145 9.1713 606 13,435 11

13 0.958 0.824 6257 10.713 9.1717 699 15,329 11

14 0.963 0.804 6273 14.834 9.1722 839 17,681 11

AI artificial intelligence, DR diabetic retinopathy, Incr. incremental, QALY quality−adjusted life-year, ICER incremental cost-effectiveness ratio, NMB net monetary benefit, GDP gross domestic product.
aStatus quo was defined as the scenario with theoretically optimal model performance, identified by the cut-off point on the receiver operative curve. ICER was calculated by comparing each intervention
scenariowith the status quo. Scenario 2-7were cost-saving, while scenarios 8–14were cost-effective compared to the status quo. Amongall, theminimumsensitivitywas found at 88.2% in themost cost-
saving scenario, while theminimum specificity was found at 80.4% in the scenarios with the greatest effect. The optimal cost-effective performance was determinedwith the highest effect at sensitivity of
96.3% and specificity of 80.4%. In the population of Lifeline Express, the prevalence of referable DR was 7.44%, and the willingness-to-pay level was determined as three times per-capita GDP (US$
30,828). All scenarios were also compared with reference scenarios (the lower-cost non-dominated scenario and no screening) and the ICERs were less than the predefined willingness-to-pay level.
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14 cost-effective scenarios and the status quo are visualized in Fig. 1A based
on costs and effects (all 1100 screening scenarios are visualized in Supple-
mentary Fig. 3). The minimum level to achieve either cost-saving or cost-
effectiveness was 88.2% for sensitivity (with paired specificity of 90.3%) and
80.4% for specificity (with paired sensitivity of 96.3%), respectively. That is
to say, when the sensitivity/specificity values surpass 96.3%/90.3%, the
accompanying decline in specificity/sensitivity would compromise the cost-
effectiveness of the screening strategy. By ranking these scenarios according
to increasing effects, it was observed that even minor improvement in
sensitivity still contributed to cost-effectiveness, despite a significant
decrease in specificity (Fig. 1B).

The AImodel achieved themost cost-saving effect when its sensitivity/
specificity was at 88.2%/90.3%, leading to a total of US$ 5.54 million in
savings but 1,490 QALYs compromised compared to the status quo. Best
cost-effectivenesswas identifiedwhen theAI exhibited thehighest sensitivity
(96.3%) and lowest specificity (80.4%) among all cost-effective scenarios,
representing the maximumQALYs. Compared to the status quo, screening
using the best cost-effective AI was projected to cost an additional US$ 14.8
million but gain 839 extra QALYs for the entire population across 30 years.

As the prevalence of referable DR increased from 4% to 8%, the
sensitivity of the best cost-effective AI also increased, consistently higher
than the status quo (Table 2). Implementing the best cost-effective AI
rather than the status quo could lead to additional costs of 11–16 million,
but provide an extra 662–974 QALYs for the entire population. The
pattern of performance change in the best cost-effective AI is consistent
across WTPs, regardless of prevalence levels (Fig. 2). In health economic
settings characterized by higher prevalence and higherWTP levels, the AI
necessitatedhigher sensitivity (pairedwith lower specificity) to achieve the
best cost-effectiveness. Specifically, in settings with WTP levels over US$
5000, sensitivity should always be higher than specificity for cost-effective
consideration.

Sensitivity analyses and subgroup analyses
Univariate sensitivity analysis showed that varying parameters in theMarkov
model did not substantially affect the ranking of cost-effectiveness (Supple-
mentary Table 2). Cost-effectiveness acceptability curves showed results of
probabilistic sensitivity analysis based on 10,000 Monte Carlo simulations
(Supplementary Fig. 4). The acceptability curves showed that at the 3-time

Fig. 1 | Cost-effective AI-based DR screening
scenarios. AI artificial intelligence, DR diabetic
retinopathy, BCES best cost-effective scenario, GDP
gross domestic product. Circles represent different
screening scenarios, while stars represent the status
quo and rhombus represent BCES. a Under a 7.44%
prevalence of referable DR and a willingness-to-pay
level of 3 times per capita GDP (US$ 30,828), the
status quo, 6 cost-saving and 7 cost-effective
screening scenarios were identified and ranked
according to ascending costs. bAhigher rank stands
for a higher effectiveness. The best cost-effective
scenario (rank 14) was identified with a sensitivity of
96.3% and a specificity of 80.4%. Performance of the
AI with a large decrease in specificity but a minor
increase in sensitivity can still benefit cost-
effectiveness.
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per-capita gross domestic product (GDP) WTP level (US$ 30,828), the best
cost-effective AI model (sensitivity/specificity: 96.3%/80.4%) had a 55.43%
probability of being the dominant choice. As WTP decreased, the best cost-
effective AI would be replaced by one with lower sensitivity.

A total of 1309 (5.40%) participants from rural regions and 16,955
(8.09%) participants from urban regions were identified with referable DR
in the Lifeline Express. Subgroup analysis results in rural and urban settings
indicated that the AI model should prioritize higher specificity in rural
settings and higher sensitivity in urban settings (Supplementary Table 3).
The best cost-effective AI needed a sensitivity of 94.7% (paired specificity
85.6%) in rural settings and a sensitivity of 96.9% (paired specificity 77.5%)
in urban settings. Even when using the best cost-effective AI model, the
urban setting can gain ~3.5 times higher QALYs than the rural setting
compared to the status quo. For different age groups, our results showed that
AI models with higher sensitivity would be required when screening for
younger populations (Supplementary Table 4).

Discussion
In this study, we conducted a simulation analysis to assess the cost-
effectiveness of AI models with varying performances in a national DR
screening program in China. Compared to the most accurate model (the
status quo), theAImodel needed to achieve at least 88% sensitivity and 80%
specificity to be either cost-saving or cost-effective. Even a slight increase in
the sensitivity of theAImodel canprovide cost-effectiveness benefits despite
a correspondingdecrease in specificity.Of all scenarios thatwere either cost-
saving or cost-effective, the model with the lowest sensitivity provided the
greatest cost savings, while themodel with the highest sensitivity proved the
most cost-effective. In health economic settings characterized by a higher
prevalence of referable DR or higher WTP levels, a higher sensitivity of the
AI, aiming to identify more positive cases, would be required for optimal
cost-effectiveness. Conversely, in settings characterized by lower prevalence
or lower WTP levels, increasing the minimum requirement for specificity
would aid in mitigating unnecessary medical costs.

The trade-off between sensitivity and specificity plays a critical role in
DR screening strategy selection. From a public health perspective, reduced
sensitivity in DR screening results in misdiagnosed patients with referable
DR, missing opportunity for timely intervention, and facing a 4.5-fold
higher risk of progressing to blindness annually when compared to those
who receive appropriate treatment20,21. The subsequent economic burden
associated with blindness can be substantial, particularly in LMICs, where it
can be up to over US$ 4000 per blind person per year22–24. In economically
disadvantaged rural areas of China, the cost of one additional case of
blindness is equivalent to ~13.6 additional referrals14. On the other hand,
decreased specificity leads to more unnecessary referrals, entailing addi-
tional costs in terms of transportation, diagnostic assessments, personnel
expenses, as well as causing additional waste of clinical staff time and
medical resources.Overwhelming the systemwithunnecessary referrals due
to low specificity could strain already constrained resources, potentially
compromising the overall effectiveness of healthcare delivery, especially in
LMICs. The advantage of AI-based screening lies in its ability to pre-
liminarily exclude a large number of negative cases, reducing the clinical

Table 2 | Best performance scenarios versus best cost-effective scenarios under different prevalence

Prevalence Scenarios Sen. Spe. PPV NPV Increase
in FP

Decrease
in FN

Cost in 251,535
population (million
US$)

Incre. Cost in
251,535 population
(million US$)

Effect (QALYs in
251,535
population)

Incre. Effect (QALYs
in 251,535
population)

4% Status quo 0.933 0.877 0.240 0.997 - - 1487 - 2,321,412 -

BCES 0.958 0.824 0.185 0.998 12,756 250 1498 11 2,322,073 662

8% Status quo 0.933 0.877 0.397 0.993 - - 1575 - 2,303,843 -

BCES 0.963 0.804 0.299 0.996 16,909 604 1590 14.7 2,304,685 842

12% Status quo 0.933 0.877 0.508 0.990 - - 1664 - 2,286,274 -

BCES 0.966 0.792 0.387 0.994 18,900 1,028 1680 16 2,287,248 974

The status quo represents the scenario based on the best model performance with the highest area under the curve. Costs and effects were estimated for the population of the Lifeline Express. The
willingness-to-pay level was determined as 3 times per-capita GDP (US$ 30,828). Under each prevalence of referable diabetic retinopathy, the status quo was cost-effective. Compared to the status quo,
BCES required for higher sensitivity (i.e., lower specificity), showed higher NPV but lower PPV, leading to increased FP cases and decreased FN cases, gaining an extra 662-974 QALYs with an additional
11–16 million costs in the population of Lifeline Express.
Sen. sensitivity,Spe. specificity,PPV positive predictive value,NPV negative predictive value, FP false positive, FN false negative,QALY quality-adjusted life-year,BCES best cost-effective scenario,GDP
gross domestic product.

Fig. 2 | Performance of the AI in best cost-effective scenarios across WTP levels
and prevalence of referable DR.AI artificial intelligence,WTPwillingness-to-pay,DR
diabetic retinopathy, Prev. prevalence, Sen. sensitivity, Spe. specificity, ICER incremental
cost-effectiveness ratio. The sensitivity and specificity of the best cost-effective AI were
modeledacrossWTP levels fromUS$0 to30,828, andat different prevalencesof referable
DR (4%, 8%, and 12%). In each scenario, the sensitivity and specificity with the best cost-
effective performance (ICER lower thanWTP level andproviding thehighest effect)were
used in this figure. Red-yellow lines indicate sensitivity and blue-green lines represent
corresponding specificity. A darker color represents a higher prevalence of referable DR.
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workload. At the same time, AI can provide rapid and real-time results,
minimizing waiting times and expediting patients’ access to necessary
treatments. However, selecting an AI model for real-world application also
faces a trade-off between sensitivity and specificity, where overall diagnostic
efficacy is a crucial consideration, and cost-effectiveness is another impor-
tant factor. For resource-limited areas, it is crucial to tailor healthcare
interventions, includingAI applications, to the specific context and capacity
of the healthcare system. Our research emphasizes the importance of
achieving the minimum performance standard and highlights the pivotal
role of prioritizing sensitivity over specificity in AI-driven DR screening in
lessening the impact of blindness.

Defining a standard for minimum sensitivity and specificity in DR
screening is not easy. In the UK and Australia, previous recommendations
suggested aminimum sensitivity of either 80%or 60%, and a specificity of at
least 95%25–30. The US Food andDrug Administration (FDA) permitted the
first authorizedAIdevice forDRdetection,with theperformance thresholds
set at 85.0% for sensitivity and 82.5% for specificity31. These criteria were
mostly developed based on empirical considerations from different
screening modalities (e.g., fundus cameras), and without explicit evidence,
especially from cost-effective perspectives25.While the previous criteriamay
fit the local contexts, it is important to note that their effectiveness varies in
other countries or regions with distinct epidemiological characteristics of
DR25. Our findings indicated that the standards of AI performance needed
in China are similar to those raised by the FDA, with a bit higherminimum
sensitivity of 88% and lowerminimum specificity of 80.4% to achieve either
cost-saving or cost-effectiveness. The difference between our proposal and
the previous recommendation can be explained by the lower cost of ocular
examinations and treatment in China32.

Our findings highlight the importance of considering the prevalence
and economic capacity of the region when deciding on the best AI-based
screening model. Globally, the overall prevalence of referable DR has been
estimated to be around 10%, but this varies across geographic regions,
ethnicities, and studymethodologies33. For instance,Zambia reported22.5%
referable DR, Thailand reported 11.3%, and China 10.14%19,34,35. WTP also
varies widely depending on a country’s GDP per capita36. While both pre-
valence andWTPcould affect cost-effectiveness outcome, it canbe observed
in our analysis that the pattern of performance change in the best cost-
effectiveAIwas consistent at different prevalence levels of referableDR (4%,
8%, and 12%), and the absolute difference in value was small, especially in
the lowerWTP region. Therefore, a similar cost-effectiveness strategymight
be applicable to multiple countries or regions with comparable healthcare
economic frameworks, but future studies are needed to validate this
observation.

Compared to using the most accurate AI model for DR screening
(status quo), our study identified six cost-saving and seven cost-effective
screening scenarios. The relative importance of cost-saving versus cost-
effectiveness can vary under different scenarios and societal considerations.
While the trade-off betweenQALYs and cost is acknowledged, the emphasis
on either cost-saving or cost-effectiveness depends on the broader health-
care goals, financial constraints, and societal values. For example, in settings
withhighprevalence or high economic levelswherehealthcare resources are
relatively abundant, the emphasis might be more on cost-effectiveness,
aiming to maximize the overall health benefits, even if it involves higher
costs. On the other hand, in settings with low prevalence or limited
resources, there might be a greater focus on cost-saving to ensure efficient
use of available funds. Amore rigorous evaluation of cost-effectiveness is to
reduce theWTP to 1GDPper capita (US$10,276).Under this circumstance,
the specificity of the best cost-effective AI should increase by 5.87%, and
sensitivity should decrease by 1.91%, respectively. We suggested that,
beyondAI accuracy considerations, societal factors such as characteristics of
the screening population, resource availability, healthcare infrastructure,
and the overall economic impact should also be taken into account when
making decisions about implementing AI-based screening programs. It is
noteworthy that while cost-effectiveness evidence from a societal perspec-
tive holds significance in resource allocation decisions and strategy

selections, it represents just one facet among several factors. Considering
healthcare perspectives or adopting a more patient-centric approach,
decision-making can be influenced by other pivotal factors such as ethical
and reimbursement considerations, which also warrant careful decision.

Previous health economic studies in China have only compared a
specificAI-based screening strategywith conventionalmanual screening, to
indicate the cost-effectiveness of using AI for screening DR14,15,37–39. Most of
these studies leaned towards adopting AI models with a high specificity
(over 97%). However, our study indicated that the best cost-effective option
was always when AI prioritized sensitivity over specificity, in both rural and
urban areas. To the best of our knowledge, our study is currently the only
one that compares the cost-effectiveness across AI models with varying
performance levels. Our strength lies in utilizing real-world data from a
national DR screening program in China, where we simulated 1,100 dif-
ferent AI model performances based on a previously validated AI model,
conducted subgroup analyses for urban and rural areas, various age groups,
and simulated analyses for different levels of WTP and DR prevalence. It
should be noted that the specificity of theAImodel in this real-world dataset
was lower than the reported performance in its previous validation aswell as
other reportedAImodels40. Thiswas due to that in this study,we reclassified
ungradable images into the positive category. Such reclassification reflects
the real-world practice of DR screening, though the reported specificity of
the AI would be largely reduced.

Ourwork is best understood in the context of its limitations. Firstly, we
only use oneAImodel to classify referableDR.However, we simulated 1100
different sensitivity/specificity pairs and we believe that the general con-
clusion could apply to other AI models as well. Secondly, the cost-
effectiveness assessment of screening scenarios was based on health eco-
nomic characteristics inChina.Although the results of our studymaynot be
directly generalizable to healthcare systems in other countries or to other
racial/ethnicpopulations, countries and regionswith comparablehealthcare
economic frameworks to China can consider our cost-effectiveness strategy
as a reference, as mentioned above. Lastly, this study did not consider other
referable health states involvingdiabeticmacular edemaand impaired visual
acuity. Due to the nature of real-world data, information regarding these
health states was not collected, thus we were only able to simulate a simple
naturalDRprogression.Nevertheless, we believe that our study underscores
the importance of evaluating both technical aspects and broader societal
implications, including cost-effectiveness, in the real-world application of
AI for informed decision-making in healthcare.

In conclusion, the most accurate AI may not be the optimal cost-
effectiveness option in real-world DR screening. Cost-effectiveness should
be independently evaluated, which is most likely to be affected by the sen-
sitivity. High sensitivity is specifically required in health economic settings
with a high prevalence of referable DR and high WTP. These findings can
facilitate the implementation of AI in real-world practice. Future work will
address the scale-up of our findings to enable a better understanding of AI
selection.

Methods
Study population and DR classification
This study adhered to the tenets of the Declaration of Helsinki. Ethical
approval and Institutional Review Board exemption for this retrospective
study on deidentified data were obtained from the Institutional Review
Board of the Zhongshan Ophthalmic Center (2023KYPJ108). Informed
consents from all participants were obtained within the Lifeline Express
Program. Approval of data availability was obtained from the Chinese
Foundation for Lifeline Express.

We conducted a simulation using data obtained from the Lifeline
Express DR Screening Program, a nationwide DR screening program in
China. From 2014 to 2019, the Lifeline Express Program enrolled 251,535
participantswith diabetes. Non-cycloplegic fundus photographswere taken
for both eyes of each participant using locally available imaging devices. In
each eye, two photographs were taken, one centered at the macula and one
centered at the optic disc. A total of 865,152 color fundus images were
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collected. All images were anonymized before inclusion in subsequent
analysis.

The classificationbasedon fundus images for referableDR followed the
guidelines of the National Health Service (NHS) diabetic eye screening
(Supplementary Table 5)40. Each image was assigned one of five grades: R0
(no DR), R1 (background DR), R2 (pre-proliferative DR), R3s (static pro-
liferative DR), or R3a (active proliferative DR). Referable DRwas defined as
pre-proliferative DR or worse conditions (i.e., R2, R3s, and R3a) and
recordedas “positive”, while the remaininggrades (i.e., R0 andR1)knownas
non-referableDRwere recorded as “negative”. Aparticipantwas considered
to have referable DR if at least one gradable image was classified as “posi-
tive”. The classification of DR was conducted by NHS-certificated human
graders. Initially, a primary grader assessed all images, and then positive
images and a random sample of 15% negative images were independently
reviewed by another primary grader. In case of any discrepancy between the
two primary graders, the images were referred to a secondary grader for a
final decision.

Fundus images from the Lifeline Express Program were sent to five
different central grading centers (grading centers of Peking Union Medical
College Hospital, Beijing Tongren Hospital, Peking University Third Hos-
pital, Joint Shantou International Eye Center, and Zhongshan Ophthalmic
Center) for DR grading, conducted by NHS-certificated graders. Grading
results of human graders were considered the gold standard for evaluating
the performance of the AI.

Model construction
Model development and the analysis of cost-effectiveness estimates were
performed using Python 3.6 and TreeAge Pro (TreeAge Software; Wil-
liamstown, MA, USA). From a societal perspective, we employed a hybrid
decision tree/Markov model to evaluate the cost-effectiveness of adopting
different AI model performances for DR screening within the Lifeline
Express Program, enrolling 251,535 diabetic participantswith amean age of
60 years and spanned 30 1-year Markov cycles.

In themodel, participantswould accept annualAI-basedDR screening
according to the recommendation guidelines of NHS and the American
Academy of Ophthalmology41,42. The screening workflow is depicted in Fig.
3. Individualswithdiabeteswere invited forDR screening, with their fundus
images captured by primary care staff and graded by the AI. Patients
identified as having referable DR or deemed ungradable (fundus images
with poor quality or poor location) were referred to ophthalmologists for a
complete eye examination, and those with confirmed diagnoses at referral
would require further treatment in accordance with guidelines.

Compliance with referral suggestion for a full ocular examination
among diabetic patients was reported as 33% in one rural region of the
Lifeline Express Program and as 50.7% in urban regions14,43,44. Compliance
to DR treatment were not collected in the Lifeline Express Program, so we
derived these data from published studies in China14,45. Considering that
most participants were from urban areas in Lifeline Express, we hypothe-
sized that in this study, participants were having 50% compliance with
referral suggestions and 70% compliance with DR treatment.

TheMarkovmodel simulates the disease progression ofDR among the
followingfivehealth states: non-referableDR, referableDR, treated referable
DR, blindness, or death (Supplementary Fig. 5). The transition occurred
when individuals (1) progressed fromnon-referableDR to referableDR, (2)
received treatment and shifted from referable DR to treated referable DR,
and (3) progressed from referable DR or treated referable DR to blindness.
Individuals were estimated to have a risk of death in any health state.

Details of model parameters are provided in Supplementary Table 6.
The baseline prevalence of referable DR is set at 7.44%, reflecting the pre-
valence of the Lifeline Express Program.

Transition probabilities and mortalities
Transition probabilities were derived from relevant data in previous studies
that closely resemble the conditions of the current study or the general
Chinese population39. As the Lifeline Express Program is a cross-sectional

national screening program without follow-up visits, the transition prob-
abilities of these participants are unavailable. We compared the transition
probabilities among various studies in China to evaluate transition prob-
abilities associated with different status changes, regarding non-referable
DR to referable DR, referable DR to blindness, and treated referable DR to
blindness14,15,37,39,46,47. In cases where specific transition probabilities were
unavailable, we derived these probabilities from reported incidence and
progression rates in observational studies from China, using the formula:

p tð Þ ¼ 1� e�rt ð1Þ

In Eq. (1), r represents the incident rate over a period time of t. For this
study, transition probabilities were derived from previous studies that clo-
sely resemble the conditions of the current study or the general Chinese
population39. Given that our study utilized the NHS grading system, clas-
sifying non-referable DR (R0 and R1) and referable DR (R2, R3s, and R3a,
the same criteria as vision-threatening DR or sight-threatening DR in
previous studies), we extrapolated transition rates from R0 to R1 and R1 to
referableDR fromprior Chinese reports closely resembling theDR status in
our study. To capture the general progression rate of DR in China, we
estimated the transition rates from non-referable DR to referable DR as 7%.
This estimation was derived from reported transition rates from R0 to R1
(ranging from0.68% to 11.89%) and fromR1 to referableDR (ranging from
2.6% to 17%) across different studies14,15,37,39, and an estimated ratio ofR0/R1
patients (5:1) in our study. Definitions for referable DR to blindness and
treated referable DR to blindness were the same for our study and previous
research, therefore transition rates of these two processes were drawn from
published data using the NHS grading system.

We calculated mortality rates based on the age-specific natural mor-
tality statistics of the Chinese population and China Population Census
Yearbook in 202048. Mortalities for people with different disease states were
estimatedbymultiplying the age-specificmortality ratewith thehazard ratio
of specific disease conditions from published studies in China14. To the best
of our knowledge, mortality hazard ratios for different DR statuses in the
Chinese population have never been reported. We compared mortality
hazard ratios from different previous studies in China and determined the
hazard ratios that closely matched the situation in the current study14,15,39,49.

Costs
Costs associated withDR (inUS$)were computed based on real costs in the
Lifeline Express Program and our hospital (as a referral site), including
direct medical costs, direct non-medical costs, and indirect costs. Direct
medical costs included costs on running the screening program, healthcare
personnel wage, examination and treatment expenses. Direct non-medical
costs included transportation and food costs related to screening sites and
hospital visits. Indirect costs consisted of income loss associated with
screening and hospital visits. In cases where participants aged 60 and above
were considered to have no income loss, this expense was calculated solely
for one accompanying family member.

Screening costs, medical costs for referral examination and treatment,
and the costs associated with blindness were all considered. AI-based DR
screening costs covered recruitment, labor, AI implementation, and tech-
nological maintenance (Supplementary Table 7). Medical costs included
costs for personnel, ophthalmic examinations and DR treatment (Supple-
mentary Table 8). Blindness-associated costs included direct medical
expenses for vision rescue, direct non-medical expenses for patient trans-
portation and food, and indirect costs from income loss of accompanied
family members in the first year. Only indirect costs for blindness care are
considered in the follow-up years. (Supplementary Table 8). A 3% annual
discount rate was applied to medical costs and blindness burden50.

Additionally, we assumed that participants in rural areas experienced
higher transportation costs to referral hospitals compared to those in urban
regions. Participants from urban areas faced higher income loss based on
region-specific per capita daily income data. All expenses were documented
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in Chinese Yuan and then converted to US dollars using the 2019 exchange
rate ($1 = ¥6.8968).

The screening costs were calculated based on the Lifeline Express
Programduring 2016–2019, involving a total of 251,535 participants. Direct
medical costs in screening included advertisement (US$ 3,915 for the entire
program), costs for imaging equipment, health personnel for imaging, and
engineering costs forAI deployment. Based onour estimation, screening for
one participant required around 10minutes. Theoretically, six fundus
cameras and health personnel responsible for image taking can screen
around 288 participants per day. Fundus cameras used in the Lifeline
Express were local devices in each screening site and hospital, therefore, we
estimate US$ 21,749 per camera during the screening period. Payment for
health personnel was about US$ 28,999 annually. Engineering costs for AI
deployment included model development, model running, and software
platform maintenance, estimated at US$ 0.214 per participant. Transpor-
tation fee was estimated for participants going to the nearest screening site.

Therefore, the total cost per person for screening was estimated to be
US$ 10.65.

Costs for examination and treatment were estimated based on data
from our hospital as a referral site of the Lifeline Express Program. One
ophthalmologist was able to assess around 60 patients daily. Definitive
ocular examination for suspect DR patients included examinations for
visual acuity, slit lamp, intraocular pressure, pupil dilation, fundus photo-
graphy, optic coherence tomography, and fluorescein fundus angiography.
The examination costs were calculated based on the unified pricing of the
basic medical service prices in Guangdong Province. Based on our field
observation, one patient would take approximately a quarter of a day to
complete the referral procedure. So, the transportation and food costs aswell
as the income loss of the patients and one accompanying family member
were calculated accordingly.

Costs for treatmentwere estimated according to data fromour hospital
and published data from Beijing Tongren Hospital as referral sites in South

Fig. 3 | Workflow of annual AI-based DR screening. AI artificial intelligence, DR
diabetic retinopathy, FP false positive, TN true negative, TP true positive, FN false
negative. The cost-effectiveness analysis was based on a nationwide DR screening
program (the Lifeline Express Program) comprising 251,535 individuals with dia-
betes. In this cohort, participants accepted annual DR screening using a previously
validated AI. Participants classified as referable DR or ungradable were suggested
referral to ophthalmologists, and those with referable DR diagnosed by ophthal-
mologists would be suggested for appropriate treatment. Participants can choose to

accept or refuse these suggestions. Participants with no DR, non-referable DR and
untreated referable DR will follow the natural DR progression process without
treatment, while those who accepted treatment were estimated to continue treat-
ment in subsequent years without entering the following cycles of DR screening.
Those who refused DR treatment, and those already blind would also not enter DR
screening in the subsequent years. Individuals were estimated to have a risk of death
in any state.
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and North China. Treatment for patients with referable DR involves scatter
or pan retinal photocoagulation and anti-vascular endothelial growth factor
(VEGF) intra-vitreous injection in the first year. Patients would receive
necessary anti-VEGF treatment according to disease progression at follow-
ups. The annual economic burden per blind patient includes directmedical
expenses for vision rescue, direct non-medical expenses for patient trans-
portation and food, and indirect costs from income loss of one accom-
panying familymember in the first year. Only indirect costs are included for
blindness care in the follow-up years. Indirect costs consisted of one
accompanying family member’s wage loss according to time spent and per
capita daily income in China14,49. Costs for blindness care included 53.2%
direct medical costs, 6.4% direct nonmedical costs, and 40.4% indirect costs
regarding loss of labor resources for family members and low-vision
services costs.

Utility values
Effectivenesswas calculated as theQALYsusingutility values for eachhealth
status. The utility values for eachDR status (non-referableDR, referableDR,
and treated referable DR) and blindness were derived from previous studies
in China that closely matched the situation in the current study14,15,37,39,51,52,
anddiscounted at an annual rate of 3.5%according to the recommendations
from the National Institute for Health and Clinical Excellence53.

The definitions of untreated referable DR (R2, R3a) and treated
referable DR (R3s) were generic between our and previous studies. There-
fore, the most widely applied utility values of referable DR (equals vision-
threatening DR in previous studies), treated referable DR (equals stabilized
vision-threatening DR in previous studies), and blindness due to DR from
published data in China were adopted in this study. For non-referable DR,
we collecteddifferent utility values of R0 (0.84, 0.87, 0.94) andR1 (0.79, 0.85,
0.87)14,15,37,39,51,52, then estimated the weighted utility value based on R0/R1
ratio (5:1) in our study.

Screening scenarios
We employed a validated AI model for automatic DR screening using
fundus images from the Lifeline Express Program and evaluated the AI’s
performance againstmanual grading results40. TheAImade a decision from
five candidature DR grades (R0, R1, R2, R3s, and R3a) for each gradable
image. The output was a 5*1 probability vector, where each entry was a
probability between 0 and 1, corresponding to the likelihood of a DR grade.
The original decision rulewas to select the gradewith the highest probability
as the final DR grade. In this study, categorical outputs of the AI included
“positive” (R2, R3s, R3a) and “negative” (R0 or R1).

The decision threshold of the AI determines its classification of
positive and negative cases. By a grade-level threshold adjustment (using
Python 3.6), we derived 1100 different AI model performances on the
receiver operating characteristic curve (see Supplementary Fig. 6 for an
example of the threshold adjustment). To derive different model perfor-
mances, decision thresholds varying from 0 to 0.9 with an interval of 0.1
were imposed on eachDR grade of the AI’s output. Only the grades with a
probability above the threshold were considered activated. The AI then
selected the gradewith the highest probability from the activated grades as
the final DR grade.

The threshold adjustment was carried out in two steps. The first step
aimed to reduce the false positives. We set different thresholds for the three
grades, R2, R3s, and R3a, while keeping the thresholds in the R0 and R1
grades at 0. The second step aimed to reduce false negatives. Different
thresholds were set for the R0 and R1 grades, while the thresholds for other
three grades (R2, R3s, and R3a) remained 0. Through the threshold
adjustment, we derived 1100 sensitivity/specificity pairs (1000 from the first
step as 10 cubed, 100 from the second step as 10 squared), representing
different model performances of the AI.

With the 1100 AI performances, we defined a total of 1100 screening
scenarios, among which the status quo was defined as the scenario with the
maximum AUC (the most accurate model). The remaining 1099 scenarios
were defined as intervention scenarios.

Cost-effectiveness analysis
ICERs were calculated to assess the cost-effectiveness by comparing each
intervention scenario with the status quo and other reference scenarios (the
lower-cost non-dominated scenario and no screening). Calculation of
ICERs was performed based on Eq. (2) as follows:

ICERs ¼ incremental cost
QALYs gained

ð2Þ

As recommended by the World Health Organization (WHO), we set
the WTP level at three-time per-capita GDP in China (US$ 30,828, in
201954). A scenario would be considered cost-effective when the ICER was
lower than the WTP level as well as any scenario with incremental effec-
tiveness and decremental costs. The best cost-effective model was deter-
mined when the scenario met the requirements of cost-effectiveness and
achieved the highest effectiveness. Net monetary benefit (NMB) was mea-
sured for evaluation from an economic perspective, which converts health
benefits (in QALYs) into a monetary value, calculated based on Eq. (3) as
follows:

NMB ¼ incrementalbenefit ×WTPthreshold
� �� incrementalcost ð3Þ

To accommodate different DR screening settings, we simulated at
WTP levels ranging from US$ 0 to 30,828, and different prevalences of
referable DR (4%, 8%, and 12%) to reflect the global variations. The 8%
prevalence mirrors the real-world scenario within the Lifeline Express
Program, while the lower prevalence of 4% was chosen based on data from
high-income countries55,56, and the higher prevalence of 12% was based on
data from other LMICs57–59.

Sensitivity analyses
Univariate sensitivity analysis was conducted for all model parameters to
determine the effects of parameter uncertainties and model robustness. A
changeof 10%aboveorbelow thebase case valuewas applied forprevalence,
utility, compliance, and transition probability. Cost considerations
encompassed a wider deviation of 20% from the base case value.

Probabilistic sensitivity analysis was conducted based on 10,000
Monte-Carlo simulations to determine the probability of being cost-
effective for each screening scenario compared with all others. Prevalence,
utilities, and transition probabilities were assigned according to the β dis-
tribution, whilst cost considerations aligned with the contours of the γ
distribution.

Subgroup analyses
We evaluated cost-effectiveness for rural and urban areas separately. The
prevalences of referable DR in rural and urban settings from the Lifeline
Express were calculated and modeled, while the same transition prob-
abilities, mortality, utility, and discount rates were applied for both settings
(Supplementary Table 9). Based on the real costs in Lifeline Express and our
hospital, we assumed that direct medical costs were the same in both set-
tings, while rural participants would spend more on direct non-medical
costs (transportation) and less on indirect costs (income loss) (Supple-
mentaryTable 10). Patient compliance to referral and treatment in rural and
urban settings was collected from Lifeline Express and published data in
China. TheWTP levels were set at $25,751 for rural settings and $37,259 for
urban settings. We evaluated cost-effectiveness in seven different age
groups, ranging from 20–29 years old to 80–89 years old. The prevalence of
referable DR in each age group was using the actual prevalence observed in
the Lifeline Express Program.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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Code availability
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