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Abstract

Exploring the generative capabilities of the multimodal GPT-4, our study uncovered significant differences between radiological
assessments and automatic evaluation metrics for chest x-ray impression generation and revealed radiological bias.
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Introduction

Generative models trained on large-scale data sets have
demonstrated an unprecedented ability to generate humanlike
text [1] and have performed surprisingly well on untrained tasks
(zero-shot learning) [2]. In medical imaging, the applications
are manifold, and it has been shown that models can not only
draw radiological conclusions [3] but also structure reports [4]
and even generate impressions based on the findings given in
a report [5] or the image itself [6]. One of the leading obstacles
limiting the development of models for generating clinically
applicable reports is the lack of evaluation metrics that capture
the core aspects of radiological impressions [7,8]. While there
are initial studies on the perception of artificial intelligence
(AI)–generated text in the general population [9], insights are
missing for specialized areas such as medical imaging.
Therefore, our study investigated the ability of GPT-4 to
generate radiological impressions based on different inputs,
focusing on the correlation between radiological assessment of
impression quality and common automated evaluation metrics,
as well as radiological perception of AI-generated text.

Methods

Overview
To generate and evaluate impressions of chest x-rays based on
different input modalities (image, text, text and image), a blinded
radiological report was written for 25 cases from a publicly
available National Institutes of Health data set [10]. The GPT-4
model was given an image, the results, or both sequentially to
generate an input-dependent impression. In a blind randomized
reading, 4 radiologists rated the impressions based on
“coherence,” “factual consistency,” “comprehensiveness,” and
“medical harmfulness,” which were used to generate a
radiological score based on a 5-point Likert scale of each
dimension. Additionally, radiologists were asked to classify the
origin of the impression (human, AI), providing justification
for their decision. The text model evaluation metrics and their
correlation with the radiological score were assessed. Lastly,
common model metrics for text evaluation were extracted and
compared to the radiological assessment. The supplementary
methods in Multimedia Appendix 1 [5,8,10-17] provide further
details.
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Ethical Considerations
Due to the publicly available data set used in this study, the
requirement to obtain written informed consent from the
participants was waived. Participants were anonymized.

Results

According to the radiological score, the human-written
impression was rated highest, although not significantly higher
than the text-based impressions (Table 1). A detailed analysis
is shown in the supplementary results section in Multimedia
Appendix 1. The automated evaluation metrics showed moderate

correlations to the radiological score for the image impressions;
however, individual scores diverged depending on the input
(Figure 1). Correct detection of an impression’s origin
(human/AI) varied by input (text: 61/100, 61%; image: 87/100,
87%; radiologist: 87/100, 87%; text and image: 63/100, 63%).
For the text input, a homogeneous distribution was found,
similar to radiological impressions classified as AI generated
(supplementary figure in Multimedia Appendix 1). It was shown
that impressions classified as human written were rated
significantly higher by the radiologist, with a mean score of
18.11 (SD 1.87) for impressions classified as human written
and 13.41 (SD 3.93; P≤.001) for impressions classified as AI
generated.

Table 1. Quantitative and qualitative scores based on the inputa.

QuantitativeQualitative

RadCliQRadGraphCheXbert vector similarityBERTcBLEUbRadiologist score

0.328d0.038d0.4710.298e0.051e10.97dImage

0.2910.1680.4170.3560.12516.95Text

0.2780.1970.5230.4110.17315.54dText and image

N/AN/AN/AN/AN/Af18.47Radiologist

aExcept for RadCiQ, which corresponds to the error rate, a higher score indicates a better approximation. For the automated metrics, the text and
image–based impression score was highest, while the radiological score for the text-based impression was closest to the radiological ground truth.
bBLEU: bilingual evaluation understudy.
cBERT: Bidirectional Encoder Representations From Transformers.
dIndicates a P value <.05 for all higher input scores.
eIndicates a P value <.05 compared to the highest score.
fN/A: not applicable.
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Figure 1. Scatterplots for each automated metric (BERT=blue; BLEU=yellow; CheXbert vector similarity=gray; RadGraph=light blue; RadCliQ=red)
depending on the input: (A) image, (B) text, or (C) text and image. For the image input, all metrics except CheXbert vector similarity showed a significant
correlation. However, the correlation was divergent or opposing for the text and text and image inputs. All correlation coefficients with their P values
are shown in the lower section of the figure. BERT: Bidirectional Encoder Representations From Transformers; BLEU: bilingual evaluation understudy.

Discussion

We evaluated the “out-of-the-box” performance of GPT-4 for
chest x-ray impression generation based on different inputs.
Based on the radiological score, text-based impressions were
not significantly lower than the radiological impressions,
whereas other inputs were rated significantly lower. Sun et al
[5] showed that text-based impressions rated by radiologists
were inferior. However, the study did not clarify if the
radiological evaluations of the impressions were conducted

under blinded conditions. Our work identified radiological bias,
as impressions classified as human written received higher
ratings. Therefore, without blinding, there is a risk that the
inferiority of the AI-generated impressions is due to bias.

For the automated metrics, the impressions based on text and
image were rated the closest to the radiological impressions,
followed by text-based impressions. For the image-based
impressions, there was a significant moderate correlation
between the automated metrics and the radiological score;
however, for the other inputs, opposite or nonsignificant
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correlations were found. Automatic metrics that capture relevant
aspects of report quality are a prerequisite for successful
development and clinical integration. Evaluation metrics,
however, can only be as good as the human assessment, which
is not free of bias and characterized by false heuristics [9]. Our
findings underline this point, as impressions that were classified

as human written scored significantly higher in the radiological
assessment. Human evaluation is not error-free, but it is the
benchmark for the evaluation of generated text.

Radiological heuristics, sources of error, and relevant aspects
of radiological quality need to be further investigated, as they
are essential for the development of useful model metrics.
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