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This review delves into the most recent advancements in applying artificial intelligence (AI) within
neuro-oncology, specifically emphasizing work on gliomas, a class of brain tumors that represent a
significant global health issue. AI has brought transformative innovations to brain tumormanagement,
utilizing imaging, histopathological, andgenomic tools for efficient detection, categorization, outcome
prediction, and treatment planning. Assessing its influence across all facets of malignant brain tumor
management- diagnosis, prognosis, and therapy- AI models outperform human evaluations in terms
of accuracy and specificity. Their ability to discern molecular aspects from imaging may reduce
reliance on invasive diagnostics and may accelerate the time to molecular diagnoses. The review
covers AI techniques, from classical machine learning to deep learning, highlighting current
applications and challenges. Promising directions for future research include multimodal data
integration, generative AI, large medical language models, precise tumor delineation and
characterization, and addressing racial and gender disparities. Adaptive personalized treatment
strategies are also emphasized for optimizing clinical outcomes. Ethical, legal, and social implications
are discussed, advocating for transparency and fairness in AI integration for neuro-oncology and
providing a holistic understanding of its transformative impact on patient care.

Central nervous system (CNS) tumors,whetherprimary or secondary, exert
a significant impact on global health, accounting for over 250,000 reported
cases annually, marking them as a substantial global concern1,2. In 2022, an
estimated 26,670 malignant and 66,806 non-malignant CNS tumors were
diagnosed in the US population3. Notably, glioblastoma, a fast-growing,
aggressive, and malignant type of brain tumor, emerges as a primary con-
tributor to morbidity andmortality among adult brain tumors, exhibiting a
disconcerting 6.9% 5-year survival rate and contributing to 10,000 annual
deaths in the US4,5. These numbers highlight the current shortcomings in
treating brain tumors.

Despite many clinical trials and decades of research, incurable brain
tumors with grim prognoses exist, such as the diffuse midline glioma

(DMG) seen in childrenandglioblastoma inadults6. This urgencyhighlights
the need for a personalized treatment approach,whichmayoffer the highest
likelihood of cure while minimizing potential toxicity to the patient.
However, the development of personalized strategies faces hurdles due to
the difficulty of generalizing approaches derived from data originating in a
solitary institution or a limited consortium of institutions, and restricted
access to advanced technologies and clinical trials, primarily concentrated in
specialized centers7. This becomes a critical concern, especially when con-
templating the ethical ramifications associated with developing approaches
based on data lacking representation across diverse demographics. Alar-
mingly, individuals with glioblastoma from lower socioeconomic back-
grounds are less likely to undergo O6-Methylguanine-DNA-
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methyltransferase (MGMT) testing8. The absence of MGMT testing may
skew predictions and contribute to late-stage diagnoses with larger and
more challenging tumors. Moreover, this demographic is less frequently
provided with a combination of diverse treatment modalities, leading to
lower survival rates9.

For a patient suspected of harboring a brain tumor, the assessment
typically initiates with a physical exam and neuroimaging, followed by a
biopsy or tumor resection in cases where it is feasible, and subsequent
histologic and molecular analyses of extracted tissue conducted through
pathology. If deemed necessary, serum or cerebrospinal fluid (CSF) bio-
marker evaluations may also be performed10. Following these assessments,
the clinical teammust decide on optimal therapy, considering the standard
of care, ongoing clinical trials, patient comorbidities, and risks of toxicity.
Treatment response is monitored longitudinally through serial MRIs and,
occasionally, other blood or CSF biomarkers11. Decisions regarding brain
tumor treatment often involve multidisciplinary meetings between neuro-
oncologists, neurosurgeons, neuroradiologists, molecular pathologists, and
neuropathologists, underscoring the complexity of these decisions12 (Fig.1).

However, these steps in disease management are ridden with chal-
lenges, and errors may lead to patient morbidity and mortality13. The
challenges include theneed forprecise diseasediagnosis and staging to guide
clinical decisions, the continuous monitoring of post-treatment disease
progress, which can be complicated by signals from neighboring neural

tissue, and thegrowing significanceof identifying genotypepatterns14. These
genotype patterns have a substantial impact on tumor behavior and clinical
outcomes15. Ultimately, the challenges ofmanaging brain tumors arise from
various factors, including the complexities of the brain, limited accessibility
for accurate imaging and biopsy procedures, inherent heterogeneity of
tumor biology, variable progression rates, individual variability in treatment
susceptibility, and relative lack of reliable biomarkers predictive of
prognosis1,16,17. The sensitivity of neural tissue to standard treatment mod-
alities, including surgery, radiation, and chemotherapy, further complicates
their care18.

Artificial intelligence (AI) shows promise as a transformative tool in
neuro-oncology, currently addressing challenges across various clinical
management stages. In brain tumor management, AI demonstrates its
potential across diagnosis, prognosis, and treatment planning by accel-
erating and enhancing MRI imaging19, detecting abnormalities, optimizing
workflows, providing accurate measurements, analyzing extensive medical
imaging data, and identifying patterns not easily discernible to human
observers20. It has significantly advanced the field by providing detailed
image analysis fordiagnostics, tumor grading, prognosis determination, and
treatment response assessment. It also facilitates surgical and nonsurgical
treatment planning21, accelerates drug discovery22, and facilitates recur-
rencemonitoring. AI tools can be incorporated into clinical trials, aiming to
improve patient outcomes and may provide the path toward personalized

Fig. 1 | AI-empowered multidisciplinary brain tumor management. a AI aug-
ments the capabilities of neuro-oncologists/radiation-oncologists by enabling
integrated diagnosis, offering deeper insights into the disease, facilitating precise
prognosis by predicting outcomes, and assisting in patient stratification to tailor
treatment plans to individual needs. b AI supports neuroradiologists by leveraging
MRI images for automated detection and tumor segmentation, identifying mole-
cular subtypes of tumors, providing quantitative measurements, and delivering
diagnostic assistance to distinguish tumors from necrotic regions, all while ensuring
automated quality checks. c AI aids neurosurgeons during surgery, contributing to
surgical margin assessment and offering real-time diagnosis information and

guidance, enhancing surgical precision and patient outcomes. d AI assists neuro-
pathologists in the analysis of fresh/FFPE samples, providing automated measure-
ment of features, aiding in tumor classification and grading, improving tumor
detection, and delivering comprehensive analysis of cellular and tissue structures
through histo-molecular classification. e Handling mutation data, single-cell
information, methylation patterns, RNA sequencing, and more, AI empowers
molecular pathologists by supporting biomarker identification, pathway identifi-
cation, treatment response prediction, variant identification, and serving as a
diagnosis assistant, streamlining the complex molecular analysis process (Created
with BioRender.com).
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therapy15,23. In clinical neuroimaging, AI plays a crucial role in tasks such as
identifying tumor boundaries and types, refining pre-therapeutic planning,
and assessing post-therapeutic responses24. The capacity for AI to process
extensive datasets offers a transformative approach to precision medicine,
potentially addressing commonly encountered pain points at all steps of the
patient care experience25–27 (Fig. 1). Additionally, it holds promise in ame-
liorating global healthcare disparities by providing democratized access to
diagnostic, prognostic, and therapeutic strategies28,29.

Recently, there has been growing exploration of integrating AI tools
into radiological and pathological workflows, suggesting potential
advancements in neuro-oncology30,31. In brain tumor analysis, AI serves as a
comprehensive framework that encapsulates machine learning (ML) and
deep learning (DL) techniques, computer vision (CV), and their integration
intoComputational Biology.ML algorithmswithinAI contribute to pattern
recognition in imaging andgenomicdata,whileDL, a subsetofML, excels in
intricate feature extraction. Computer vision, whether through classical
image processing techniques or advanced DL methods, interprets visual
data for precise medical image analysis. Computational biology leverages
AI, ML, and DL to analyze extensive biological datasets, aiding in under-
standing the genetic andmolecular aspects of brain tumors (Supplementary
Table 1). The synergy among these techniques enhances the depth and
accuracy of brain tumor characterization, influencing diagnosis, prognosis,
and treatment planning.

In conducting this review, a comprehensive literature search was
conducted across several electronic databases. The search was focused on
recently published articles, with an emphasis on studies related to AI
applications in brain tumor diagnosis, prognosis, and precision treatment.
Our search strategy prioritized peer-reviewed articles, systematic reviews,
meta-analyses, and landmark studies in the field. This narrative review
provides a comprehensive understanding of AI’s pivotal role in managing
primary malignant brain tumors, focusing on gliomas. It explores AI
applications in brain tumor diagnosis, prognosis, treatment planning, and
predictive analytics. Addressing the multifaceted nature of AI in neuro-
oncology, we discuss biomarkers, ethical implications, innovative methods,
and challenges, including considerations for racial and sex-specific differ-
ences within AI applications and efforts to address disparities in current
work limitations. What sets our review apart is its explicit focus on inte-
grating AI in radiology, pathology, and genomics for comprehensive brain
tumor analysis. Unlike previous papers, our review emphasizes the con-
vergence of AI applications across radiology, pathology, and genomics,
providing a holistic approach to brain tumor diagnostics, prognostics, and
treatment planning.While many prior reviews have discussed AI in neuro-
oncology broadly, they often lack a specific emphasis on the synergistic
integration ofAI across these critical domains. Concentrating ondiagnostic,
prognostic, and treatment planning within the imaging domain, our paper
not only explores the latest advancements in AI tailored to pathology,
radiology, and genomics but also addresses the gaps left by previous reviews
in fully comprehending the interconnected roles of these disciplines in brain
tumor management. This focused approach contributes a unique per-
spective, detailing AI’s transformative role in refining imaging-based diag-
noses, prognoses, and treatment planning, which were not thoroughly
covered by the broader, less-specialized reviews in the field.

Data types and datasets for brain tumor analysis
Brain tumor analysis relies on a range of data types that are effectively
utilized by AI algorithms to unveil crucial characteristics. Key data cate-
gories encompass imaging data, genomic data, and clinical data. Medical
imaging techniques, such as MRI and CT, offer the opportunity to extract
intricate visual features about tumor size, location,morphology, and texture.
The current standard for brain tumor imaging involves multi-parametric
MRI, including sequences like pre- and post-contrast T1-weighted, T2-
weighted, fluid-attenuated inversion recovery (FLAIR), diffusion-weighted
(DWI), and susceptibility-weighted imaging (SWI) as commonly obtained
sequences. High-volume neuro-oncology centers often incorporate addi-
tional techniques like MR spectroscopy and perfusion imaging11,32. Beyond

standard imaging, radiomics extracts quantitative features, while histo-
pathological data, derived frombiopsies or surgical resections, encompasses
tumor cellmorphology and tissue architecture. Genomic data, derived from
DNA and RNA sequencing, transcriptomic analysis, and methylation
analysis, aids in classifying subtypes and predicting tumor aggressiveness33.
Moreover, prominent molecular biomarkers play a pivotal role in dis-
criminating between brain tumor subtypes1,9,34. These include mutations in
IDH for astrocytomas and oligodendrogliomas, TERT promotermutations
for glioblastomas, EGFR amplification for glioblastomas, gain of chromo-
some 7 and loss of chromosome 10 for glioblastomas, ATRXmutations for
astrocytomas,MGMTpromotermethylation for glioblastomas, co-deletion
of 1p and19q chromosomes for oligodendrogliomas, anddistinctmolecular
subtypes for medulloblastoma (MBs)9 (See Tables 2 and 3). Lastly, Clinical
data, inclusive of patient history, medical records, and treatment responses,
contributes to a comprehensive diagnostic profile, with outcomes data
serving as a crucial reference for survival prediction models (see Table 1).

In addition to more standardly employed data types, innovative
approaches like liquid biopsies have emerged for the early detection of brain
tumors35. Circulating tumor DNA (ctDNA) analysis, a non-invasive
method, monitors tumor mutations and genetic changes through frag-
ments of tumor DNA in the bloodstream36,37. The integration of these
diverse data types and advanced technologies enables a new era of accurate,
minimally invasive, and effective approaches for diagnosing and treating
brain tumors, overcoming the limitations of conventional diagnostic
methods. The integration ofmultiple data sources throughmultimodal data
fusion enhances analyses accuracy by offering a more comprehensive view
of the tumor’s characteristics and behavior38(Fig. 2). A concise overview of
each data type, including its description and purpose, is provided in Table 1.

In addition to the institutional datasets, numerous public datasets play
a crucial role in evaluating AI-based algorithms for brain tumor diagnosis,
prognosis, and treatment planning. Tailored to diverse researchneeds, these
datasets cover various aspects of the disease. The Cancer Imaging Archive
(TCIA) is notable among general brain tumor datasets, offering a com-
prehensive repositoryofmedical imagingdata, includingMRI,CT, andPET
scans for various tumor types39. The MICCAI BraTS Challenge provides
standardized brain tumor segmentation datasets annually, ideal for asses-
sing algorithms focused on precise tumor delineation40.

For specific tumor types, resources such as the NCI TARGET dataset
include dedicated sections for glioblastoma (TCGA-GBM) and lower-grade
gliomas (TCGA-LGG)41. Additional platforms such as the open data alli-
ance and theNCI data commons offer open-access datasets across scientific
domains, includingmedical and brain tumor datasets42,43. Selecting themost
appropriate dataset depends on factors like tumor type, imaging modality,
data type (MRI, CT, PET, etc.), availability of ground truth annotations, and
data size, allowing researchers to align their choice with specific research
interests for AI-driven investigations into brain tumor diagnosis and
treatment planning.

Advancements inAI-enhancedpreprocessing for precisionbrain
tumor analysis
In brain tumor analysis, AI has addressed the challenges of navigating brain
anatomy and tumor variability and significantly enhanced crucial pre-
processing steps for accurate diagnosis, prognosis, and treatment planning.
Addressing issues of spatial consistency, AI-powered algorithms, such as
those integrated into theBrainNet viewer, correct artifacts anddistortions in
MRI images44. This correction facilitates more precise tumor localization
and segmentation, which is crucial for effective brain tumor analysis.

Moreover, AI streamlines the intricate process of tumor localization
with remarkable accuracy, as demonstrated by algorithms evaluated on the
BraTS dataset40. Notably, someAI-empoweredmethods have achieved high
accuracy in localizing tumors, thereby enhancing efficiency for radiologists
and reducing the potential for human error45,46. Image segmentation via
CNNs, which are adept at uncovering complex patterns from data, has
emerged as a powerful tool47–51. AI-driven algorithms, including the nnU-
Net algorithm52, demonstrate exceptional proficiency in automating the
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crucial task of segmenting normal tissues in medical images. This seg-
mentation is vital for tumor analysis, assisting radiologists in identifying
areas to avoid during radiation therapy or surgery52. In recent develop-
ments, the federated learning framework has demonstrated comparable or
superior results in the automated segmentation of rare pediatric tumors
from MRI images. This approach leverages data from diverse institutions
while ensuring the utmost confidentiality of patient information24.

The integration of multimodal data enhances detection efficacy by
tapping into diverse information sources53. The landscape of DL introduces
innovative architectures, with some notable exemplars, including the 3D
U-Net46, DeepMedic54, and V-Net55. The 3D U-Net, designed to excel in
segmenting 3D images of glioblastoma, and recognized for its straightfor-
ward training and consistent effectiveness, achieves remarkable results in
brain tumor segmentation. DeepMedic54, known for its robustness in
managingnoise andartifacts, stands as a strong competitor to the 3DU-Net,
trained on glioma images. The V-Net, a nascent innovation designed to
accurately segment volumetric medical images, establishes its prowess in
segmenting both 2D and 3D MRI images55. Overall, AI’s role in these
preprocessing steps empowers radiologists to conduct brain tumor analysis
with heightened precision and efficiency.

AI in brain tumor diagnosis
Brain tumor diagnosis involves the identification and characterization of
abnormal growths or masses within the brain, utilizing various medical
imaging, pathological, and clinical methods to determine the nature, loca-
tion, and characteristics of the tumor55. Brain tumors vary based on their
origin, location, histology, malignancy, and patient age, and categorizing
them is crucial for diagnostics, prognosis, and treatment planning55. These
tumors consist of diverse subtypes, each characterized by distinct cellular
origins and histological features. While pediatric-type low and high-grade

gliomas and MB are most common in children, glioblastomas, diffuse
gliomas, and meningiomas predominate in adults56. Given their sig-
nificance, the predominant focus of research has been on glioblastoma and
other diffuse glioma in adults and MB, and pediatric type low- and high-
grade glioma in children57,58. Accurate identification of the tumor subtype
empowers clinicians to customize diagnostic methods, predict disease
behavior, and inform targeted therapies59. Unique genetic and histological
signatures associated with different tumor types provide information about
aggressiveness and treatment responses, guiding the selection of imaging
modalities, biomarker assessments, and treatment plans60.

Brain tumors are often identified on CT performed in the emergency
room setting, prior to being further characterized via MRI, and are defini-
tively diagnosed via histopathologic examination56. Standard of care in
neuropathologynow includesmolecular andgenetic testing formany tumor
types, guided by initial histologic findings57. Current diagnosismethods face
challenges58–60 such as early detection due to tumor concealment61, imaging
limitations20, and issues of visualizing small or deep-seated tumors62,63,
difficulties in distinguishing tumor types64, invasive procedures with asso-
ciated risks65, and the heterogeneity of brain tumors66. These approaches are
hindered by time-consuming processes, limited accessibility, and inter-
pretation variability among experts, highlighting the need for advanced AI-
based methods16,67.

AI can add value at all steps of tumor diagnosis, with the majority of
current studies attempting to create predictivemodels trainedusing imaging
data, pathology data, or both datamodes combined68. The integration of AI
models in brain tumor diagnosis shows potential, particularly in distin-
guishing between glioma and solitary brain metastases using quantitative
image analysis methods69,70. Neuroimaging provides a unique glimpse into
the unaltered tumor in its entirety, while pathologic analyses provide amore
in-depth look at the cellular and molecular features of the tumor. ML, as a

Table 1 | Overview of data types in brain tumor analysis

Radiomics Data Description: radiomics involves extracting quantitative features from medical imaging data, such as MRI or CT scans.

Purpose: it aims to capture and analyze the texture, shape, and intensity patterns of tumors, providing additional information
for diagnosis, prognosis, and treatment planning.

Pathological Data Description: pathological data involves the examination of tissue samples from the tumor through biopsy or resection.

Purpose: pathological analysis helps determine the tumor’s histological type, grade, and molecular characteristics, aiding in
treatment decisions.

Genomic Data Description: genomic data involves analyzing the genetic makeup of tumors through techniques like next-generation
sequencing (NGS).

Purpose: it provides insights into genetic mutations, alterations, and expression patterns, guiding personalized treatment
approaches.

Clinical Data: Description: clinical data encompasses patient-related information, including demographics, medical history, and treatment
records.

Purpose: integration of clinical data with other datasets aids in understanding patient-specific factors influencing tumor
behavior and treatment responses.

Multimodal Data (MRI and CT) Description: multimodal data combines information from different imaging modalities, commonly MRI and CT scans.

Purpose: combiningdata frommultiplemodalities enhances theoverall understanding of the tumor’s characteristics, offering a
more comprehensive view.

Multi-parametric MRI Description: multi-parametric MRI involves acquiring images using various sequences such as T1-weighted, T2-weighted,
FLAIR, DWI, and SWI.

Purpose: different sequences provide diverse information about the tumor’s structure, function, and blood supply, aiding in
accurate diagnosis.

MR Spectroscopy and Perfusion Imaging Description: MR spectroscopy assesses the chemical composition of tissues, while perfusion imaging measures blood flow.

Purpose: these techniques provide information on metabolic activity and vascularization, assisting in tumor characterization.

Next-generation Sequencing (NGS) Description: NGS is a high-throughput sequencing technology that analyzes DNA, RNA, or both.

Purpose: in brain tumor analysis, NGS helps identify genetic mutations, fusions, and variations, guiding targeted therapies.

Circulating Tumor DNA (ctDNA) Analysis: Description: ctDNA analysis involves detecting tumor-derived genetic material circulating in the bloodstream.

Purpose: it enables non-invasive monitoring of tumor dynamics, treatment response, and the emergence of resistance.

Each data type is described along with its purpose, elucidating its role in enhancing diagnosis, prognosis, and treatment planning for brain tumors.
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key element of AI, is contributing to advancements in brain tumor diag-
nostics by enhancing accuracy, expediting image analysis, enabling early
detection, and improving differentiation between tumor types. Recent
progress in CV, ML, and DL holds the potential for addressing challenges
and improving patient care in brain tumor diagnosis45.

AI-empowered radiology, and histology-based diagnostic
methods
Radiology- and histology-based brain tumor diagnosis involves
extracting quantitative features from medical images such as MRI scans
or H&E WHI to capture tumor morphology, texture, and spatial rela-
tionships. Traditional feature extraction approaches such as texture
analysis (Gray-level co-occurrence matrix (GLCM), Gray-level run-
length matrix (GLRLM), and Haralick71,72), Shape analysis73, Intensity
analysis74, Wavelet-based analysis75, are complemented by newer
approaches. Then, ML and DL construct predictive models, enabling a
personalized, data-driven approach to diagnosis31,76,77. Common tech-
niques comprise CNNs, RNNs, vision transformers, generative adver-
sarial networks (GANs)78, support vector machines, and random
forests77 (Supplementary Table 1). Models generated from multiple
sequences, such as mpMRI have been shown to be more accurate when
compared to single sequence models79 for tumor detection, assessing
grades, and guiding treatment planning80.

The histology-based diagnosis methods, aligned by the 2021 WHO
(World Health Organization) CNS classification book, are central to brain
tumor pathology. The histology-based analysis encompasses various
molecular techniques leveraging histological data to enhance brain tumor
diagnosis. Methylome profiling, a recently influential technique using AI/
ML-based classifiers, has become an influential technique for categorizing
and diagnosing brain tumors81. While the 2021 WHO classification sup-
ports the use of methylome classifiers for various brain tumors either as
essential or desirable criteria, there’s ongoing debate over the best method
and the limited accessibility of diagnostic tests34. DeepGlioma82, anAI-based
diagnostic screening system, offers rapid results (<90 seconds) by stream-
lining the molecular diagnosis of GMGs using stimulated Raman histology
(SRH) images. This innovative system has been developed and validated on
a multicenter cohort, highlighting its potential for rapid and accurate brain
tumor diagnosis82.

Furthermore, innovative approaches utilizing radiomics on MRI per-
fusion scans demonstrated the ability to predict IDH mutations, providing
valuable information for diagnosis and treatment planning83. Terahertz
spectroscopy has been explored as a non-invasive technique for predicting
IDHmutations in glioma tissue samples, presenting a promising alternative
to existing methods84. Moreover, advanced analysis techniques applied to
18F-FET PET/CT scans have enabled the prediction of both glioma grade
and IDH mutation status in untreated patients85. Notably, a deep learning

Fig. 2 | Multimodal integration for enhanced diagnosis, prognosis, and treat-
ment response prediction in brain tumors. Shown is the structural framework of a
multimodal integrationmethod designed to improve brain tumormanagement. The
process involves the assimilation of data from five different sources, each con-
tributing unique information. From MRI scans, radiomic data is generated. This
data includes segmented MRI images achieved through AI-driven segmentation
techniques, providing information about the tumor’s spatial characteristics. Blood
samples yield ctDNA, allowing for the extraction of epigenomic, fragmentomic, and
genomic alterations that inform the molecular landscape of the tumor. CFS samples
provide cell-free DNA (cfDNA), offering genomic alteration information and
contributing to a comprehensive understanding of the tumor’s genetic profile.
Formalin-fixed paraffin-embedded (FFPE) tissue samples provide transcriptomic

and molecular pathology data, offering information about gene expression and
cellular structure. Clinical information such as age, race, gender, and electronic
medical records (EMR) data supplement the molecular and imaging data, enriching
the patient’s profile. For each of these modalities, feature extraction is performed,
generating a set of informative characteristics. Subsequently, predictive models are
applied to each dataset to estimate key outcomes related to diagnosis, prognosis, and
treatment response. In the late multimodal integration, the predictions from these
distinct models are fused to improve performance and precision. By synthesizing
information from diverse sources and modalities, the integrated approach enhances
the reliability and accuracy of neuro-oncological diagnosis, prognosis, and treatment
response prediction (Created with BioRender.com).
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imaging signature (DLIS) has been developed, offering accurate prediction
of 1p/19q co-deletion in diffuse lower-grade gliomas through pre-operative
MRI scans, presenting a non-invasive alternative with significant diagnostic
potential86.

The Integration of immunohistochemistry, methylation profiling,
chromosomal microarray, scRNA-seq87, and NGS, with histology-based
analysis could further enhance brain tumor diagnosis81,88. While conven-
tional approaches, utilizing imaging, tissue biopsies, and genetic testing,
confidently identify many brain tumors by combining histology with spe-
cific genetic changes, exceptions exist, such as high-grade astrocytoma with
piloid features, introduced in the 2021 WHO classification88,89. This parti-
cular condition demands methylome profiling for diagnosis89, but its rarity
suggests that methylome classifiers are best suited for specific cases with
atypical clinical and pathological presentations. A recent deep learning
method named “Sturgeon,” can rapidly and accurately classify CNS tumor
types during surgery using sparse methylation array data obtained from
nanopore sequencing produced during surgery. It classifies CNS tumors
within 40minutes after starting sequencing,with an accuracy of 72% in real-
time surgical settings90. This method allows surgeons to make more
informed decisions about the extent of resection, potentially reducing the
risk of complications and improving patient outcomes.

AI in brain tumor prognosis
Prognosis in neuro-oncology involves estimating disease progression for an
individual, considering treatment planning, disease stage, and site91. Key
metrics are overall survival (OS), and progression-free survival (PFS), cru-
cial for assessing prognosis and guiding treatment92. However, conventional
methods relying on disease stage and clinical variables face limitations,
including interpretational complexities, biases, and the need for extensive
datasets. Achieving precision for personalized care in predicting recurrence
and survival remains challenging with conventional methods.

In brain tumor care, AI plays a pivotal role in advancing prognostic
capabilities. ML and DL techniques are increasingly being harnessed to
predict OS, and PFS, leveraging features extracted from pre-treatment
imaging data. Noteworthy studies, including radiomic signatures from T1
and FLAIR MRI scans of glioblastoma patients69, and T1, T2, and FLAIR
scans from treatment-naïve patients, show significant promise in predicting
PFS and OS93,94. The AI models outperform routine clinical variables and
demonstrate excellence when combined with clinical attributes in glio-
blastoma patients95,96. Remarkably, models based on T2-weighted MRI97

and radiomic features from peritumoral edema reveal associations with
survival outcomes, site of recurrence, andmolecular subtype98, especially in
glioma97, and glioblastoma patients99. DL-based models are created to
identify tumors and forecast the site of recurrence, sometimes before radi-
ologists can detect it100. These models, using various imaging methods,
highlight AI’s exceptional predictive capabilities97,99 (Table 2).

Furthermore, Intra-tumoral heterogeneity and cell-state plasticity have
been identified as keydrivers for the therapeutic resistance of glioblastoma30.

Spatial transcriptional profiles and prognosis from histology images were
predicted using this DL framework, shedding light on the potential of AI in
unraveling complex aspects of tumor behavior30. Additionally, the identi-
fication of IDHmutations has been leveraged to guide prognosis, while the
definition of glioblastoma has been refined through the analysis of TERT
promoter, EGFR amplification, gain of chromosome 7, and loss of chro-
mosome 10. Additionally, H3F3A has emerged as a key marker for
aggressive pediatric tumors101.

AI in brain tumor therapeutic management
In addition to adding value to both diagnostic and prognostic capabilities, AI
has been used for improving brain tumor treatment planning and treatment
response assessment102. It transforms therapeutic approaches and enhances
precision by aiding in the identification and characterization of brain tumors.
It guides clinicians in determining the most suitable treatment strategies for
individual patients. This multifaceted process involves diverse techniques,
including imaging, clinical assessments, biopsies, andmolecular analyses, for
precise determination of tumor presence, type, location, and extent.

AI-based methods excel in predicting therapy responses, enabling
improved treatment planning across various cancers103. Novel approaches,
such as predicting responses to gamma knife radiosurgery for metastatic
brain tumors using radiomic features104 from contrast-enhanced T1 and
FLASH scan and utilizing predictive models based on pre-treatment ADC
maps for forecasting responses to radiation therapy, showcase AI’s
efficacy104. Integrated models, combining radiomics with clinical attributes,
effectively assess radiotherapy responses for patients with brain metastasis
from primary breast and lung cancer across multicenter patient cohorts105.
Spatial heterogeneity analysis of peritumoral edema (ED) in glioblastoma
aids in identifying high-risk habitats within ED, leading to enhanced
treatment planning106. While identifying the crucial marker MGMT for
temozolomide (TMZ) resistance in glioblastoma patients presents chal-
lenges, AI-based radiomic methods emerge as predictors of both MGMT
status and TMZ response, providing valuable insights for informed treat-
ment decisions101,107 (Table 3).

Integrative multimodal and multiscale analysis
In multimodal and multiscale approaches, the hope is for a more compre-
hensiveunderstandingofbrain tumors through the integrationof genomics,
pathomics, and radiomics data. Genomics, especially through techniques
likeNGS, takes aprominent role inunraveling the genetic landscapeof brain
tumors, providing information into their genomic alterations88. Molecular
subtyping and biomarkers identified play a critical role in personalized
precision medicine, impacting early detection, prognosis, and treatment
response prediction. This integrative approach, when combined with clin-
ical data, advances our comprehension and lays the groundwork for tailored
treatments targeting specific genetic alterations.

Complementing this genomic foundation, multimodal imaging tech-
niques such as MRI, CT, and PET contribute a rich layer to the integrative

Table 2 | AI-Based prognostic models in brain tumor studies: patient cohorts and feature extraction strategies

Study Patient cohort Tumor type Treatment status Feature extraction

Kickingereder et al.93 119 patients, T1 and FLAIR Glioblastoma Possibly treatment-naive Handcrafted radiomic features

Prasanna et al.94 65 patients, T1, T2, FLAIR Glioblastoma Treatment naive Handcrafted radiomic features

Kickingereder et al.95 181 patients, T1, T2, FLAIR Glioblastoma Treatment naive Handcrafted radiomic features

Kim et al.96 83 patients, T1 and FLAIR Glioblastoma Pre-operative Handcrafted radiomic features

Li et al.97 652 patients, T2 scan Glioma Pre-operative Handcrafted radiomic features

Lyer et al.98 88 patients, T1 Medulloblastoma NA Handcrafted radiomic features

Long et al.99 22 patients, T1 and FLAIR scan Glioblastoma Pre-operative scan Handcrafted radiomic features

Zhou et al.100 FLAIR and T1 scan NA Both presurgical and post-
surgical

Deep learning

Zheng et al.30 410 patients, Single-cell RNA seq and spatial
transcriptomics

Glioblastoma NA Deep learning
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tapestry, albeit with challenges of cost and time108. When fusedwith clinical
expertize and other diagnostic data, multimodal imaging significantly
enhances diagnostic accuracy. The integration of genomics and radiomics,
facilitated by AI, emerges as a revolutionary force in understanding and
treating brain tumors.

Furthermore, AI’s advancements extend beyond unimodal predic-
tions, ushering in an era of multimodal prognostic and treatment approa-
ches. Thesemultiscale,multimodal approaches extract features fromdiverse
data sources, including radiomic images andmultimodal imaging, resulting
in a more comprehensive and accurate understanding of the disease
trajectory100 (Fig. 2).

Challenges and limitations of AI in brain tumor diag-
nosis, prognosis, and treatment
Despite the successful integration of AI models in different steps of brain
tumor management, challenges persist. These challenges include restricted
access to high-quality data, concerns regarding the interpretability and
explainability of DLmodels, and the need for generalizability across diverse
populations and tumor types109. The reproducibility of radiomic-based
features across different institutes faces challenges due to variations in image
acquisition parameters, including machines, models, and contrast
amounts110. Particularly, achieving reproducibility is more complex in MR
radiomics compared to CT radiomics111. To standardize radiomics, the
introduction of the radiomic quality score (RQS) has been pivotal112.
However, despite the importance of validation of the AI method in neuro-
oncology using external dataset, only 29.4% of original studies included
external validation113.

Additionally, in brain tumors management, it becomes evident that
racial disparities introduce intricate dynamics shaped by race, socio-
economic variables, and geographical influences114. This complexity extends
to various aspects, including recommendations for brain tumor surgery115,
emphasizing the importance of addressing such disparities in AI-based
methods throughout the spectrum of brain tumor management to advance
cancer care. Moreover, disparities in brain tumor rates and outcomes,
particularly in glioblastoma, manifest differently between males and
females116. This underscores the necessity for AI-based approaches to factor
in sex-related influences across incidence, survival, tumor biology, genetics,
treatment response, and prognosis. The key advantages of these models lie
in offering enhanced predictions for personalized treatment and the
potential for early detection by accounting for gender-specific
characteristics.

Ethical, legal, and social implications of AI in brain tumor
management
The integration of AI in brain tumor diagnosis, prognosis, and treatment
raises critical ethical, legal, and social considerations117. Key ethical
concerns include ensuring patient privacy through robust data privacy
measures, obtaining informed consent, addressing algorithmic fairness,
and promoting transparency in AI algorithms and accountability to
build and maintain patient trust28. Innovations like federated learning
aim to tackle the privacy challenge in AI by enabling collaborativemodel
training among multiple parties without the need to share raw data24.
Ethical imperatives extend to addressing biases and ensuring equitable
access. Legal considerations, encompassing liability for AI-generated
errors, medical malpractice standards, and regulatory compliance,
underscore the need for robust legal frameworks. Collaborative efforts
involving policymakers, regulatory bodies, and legal experts are crucial
to clarify responsibilities, protect patient safety, and foster responsible
AI development. Social implications, such as impacts on patient-doctor
relationships, patient empowerment, and healthcare disparities, require
careful consideration. AI has the potential to empower patients by
providing personalized information and enabling shared decision-
making117,118. However, the equitable access and affordability of AI-
driven healthcare need to be addressed to avoid exacerbating existing
disparities117,118.T
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Discussion
This review highlights the transformative impact of AI in brain tumor
management, signifying a paradigm shift in healthcare that addresses
longstanding challenges. AI’s proficiency in ML and DL techniques, spe-
cifically in image segmentation, spatial consistency, and prediction,
enhances precision in identifying and characterizing brain tumors. This
precision contributes to improved diagnostics, prognosis, and personalized
treatment planning. The seamless integration of diverse data types, from
medical imaging to genomics, along with clinical history, enables a holistic
understandingof tumor characteristics, shapingprognosis andpersonalized
treatment plans. AI’s potential to empower clinicians with real-time mon-
itoring, enhanced treatment planning, and optimization is emphasized,
promising improved patient outcomes.

The prognostic capabilities of AI-basedmodels surpass routine clinical
variables, providing superior predictive accuracy and refining survival
predictions30. The integration of AI in predicting treatment response, sur-
vival time, and site of recurrence is a significant advancement, enabling
precise, personalized therapies tailored to individual tumor characteristics
and patient-specific data. AI-driven diagnosis not only facilitates real-time
monitoring but also improves treatment planning and optimization. This
section highlights AI’s potential to deliver more precise, personalized, and
effective interventions, contributing to enhanced patient outcomes. Clinical
decision support systems, empowered by AI, not only provide evidence-
based treatment recommendations but also contribute to ongoing research
by generating novel insights and biomarkers.

Ethical considerations in the integration of AI in brain tumor diag-
nosis, prognosis, and treatment are acknowledged, covering data privacy,
algorithmic fairness, legal liability, and social implications. Robust legal
frameworks and collaborative efforts such as federated learning are deemed
necessary to address these challenges for responsible AI development and
societal acceptance in healthcare. Despite challenges such as data collection
costs and interpretational complexities, AI integration holds substantial
promise, offering prospects for precise and personalized patient care in the
future. However, workforce changes and training may be necessary to
effectively integrateAI technologies into healthcare settings. The ethical and
societal acceptance of AI in healthcare depends on transparent commu-
nication, addressing privacy concerns, and promoting fair and inclusive
practices.

Overall, AI extends its influence into treatment planning, revolutio-
nizing therapeutic strategies and significantly contributing to improved
patient outcomes. The integration of AI into the treatment landscape holds
promise for personalized and effective interventions in neuro-oncology.

A vision for the future: a spectrum of approaches
The integration of AI in brain tumor diagnosis, treatment, and prognosis
has seen significant progress, yet there are still gaps and promising future
directions to explore. Multimodal data integration108, real-timemonitoring,
diagnosis, and adaptive treatment strategies hold the potential to enhance
diagnostic accuracy and treatment outcomes90. AI can play a critical role in
long-term prognostication and survivorship care planning, aiding in
treatment decision-making. Bridging the gap between clinical practice and
research through data-sharing networks can accelerate AI model develop-
ment and validation. Transparency and interpretability of AI models are
essential for gaining trust and acceptance in clinical settings119,120. Ethical
considerations andhuman-centereddesignprinciplesmust be prioritized to
ensure responsible and patient-centric AI integration. By addressing these
aspects, AI has the potential to revolutionize brain tumor care and improve
patient outcomes120.

Envisioning the future of brain tumor analysis, DL stands at the
forefront, but various techniques beckon exploration based on specific
applications and data availability. Improved imaging methods, such as
functional magnetic resonance imaging (fMRI)121 and diffusion tensor
imaging (DTI)122, provide more precise tumor characterization, despite
challenges like sensitivity to noise, head motion, magnetic field distortions,
and computational expenses123,124. Computational advancements, notably

CNNs and Transformer-based models, enhance accuracy in the detection
and classification of brain tumors125–127. Multimodal data fusion108,
encompassingMRI, CT, andPETscans38, alongwith transfer learning using
pre-trained models from vast image datasets, addresses the challenge of
limited labeled medical data77 (Supplementary Table 1).

Graph-based methods leverage intricate brain region relationships128,
with graph neural networks (GNNs) and graph-based convolutional net-
works (GCNs) illuminating the path of modeling brain connectivity and
uncovering tumor-associated anomalies129. Radiomics and feature engi-
neering extract an array of quantitative features frommedical images, with
ML algorithms illuminating patterns and correlations. Explainable AI
(XAI), a pivotal facet, ensures algorithm transparency and interpretability, a
cornerstone in medical applications130,131. Recent endeavors have gravitated
toward devising AI models with explicable outputs, fostering clinicians’
comprehension of decision-making processes, and thus nurturing trust in
automatedbrain tumordetection and classification.Dataaugmentation and
synthesis techniques, encompassing image rotation, scaling, flipping, and
the ingenuity of GANs, fortify the training dataset’s robustness78,127. Addi-
tionally, AutoML and hyperparameter optimization tools streamline the
optimization of architecture and hyperparameters in brain tumor detection
algorithms, culminating in more efficient and precise models.

Collaborative platforms and datasets, such as federated learning24,132

burgeoning repositories of meticulously annotated brain tumor data,
expedite algorithmic training, evaluation, and innovation while catalyzing
benchmarking efforts. The realm of real-time detection, propelled by
advances in hardware such as graphics processing units (GPUs) and field-
programmable gate arrays (FPGAs), unlocks the potential for real-time
processing of medical images90,133. Such real-time algorithms hold the pro-
mise of streamlining clinical workflows and elevating patient care. The
recent utilization of Large Language Models (LLMs) in neurological
research demonstrates a remarkable capacity to analyze diverse data sour-
ces, offering significant contributions to early diagnosis, patient support,
and clinical assistance.Noteworthychallenges, includingconcerns related to
data privacy and biases, highlight the imperative for collaborative endeavors
to ensure the responsible development of LLMs in neurology134 (Supple-
mentary Table 1).

Conclusions
We explored the transformative applications of AI, including CV, ML, and
DL, in managing brain tumors. AI shows significant promise in diagnosis,
prognosis, and treatment planning by effectively detecting and classifying
brain tumors from medical images. Through radiomic, pathomic, and
genomic analyses, AI contributes to precise tumor characterization. In
treatment, AI plays a crucial role in planning, optimization, and response
prediction, supporting personalized recommendations and real-time
monitoring. The integration of AI-driven approaches aligns with preci-
sion medicine and patient-centered care. However, the adoption of AI in
brain tumor management requires careful consideration of ethical, legal,
and social implications, addressing concerns related to data privacy and
healthcare disparities.

Future directions include bridging research gaps, exploring LLM
models, multimodal data integration, and advancing real-time monitoring.
AImodels trained ondiverse datasets hold promise for predicting treatment
responses and improving patient outcomes. Ongoing development and
fine-tuning are essential for uncovering the full potential and challenges in
the clinicalmanagement of brain tumors, positioningAI as a valuable tool in
research and practice.
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