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Abstract

Given the requirement to minimize the risks and maximize the benefits of technology applicationsin health care provision, there
is an urgent need to incorporate theory-informed health IT (HIT) evaluation frameworks into existing and emerging guidelines
for the evaluation of artificial intelligence (Al). Such frameworks can help developers, implementers, and strategic decision
makersto build on experience and the existing empirical evidence base. We provide a pragmatic conceptual overview of selected
concrete examples of how existing theory-informed HIT eval uation frameworks may be used to inform the safe devel opment and
implementation of Al in health care settings. Thelist isnot exhaustive and isintended to illustrate applicationsin line with various
stakeholder requirements. Existing HIT evaluation frameworks can help to inform Al-based development and implementation
by supporting developers and strategic decision makers in considering relevant technology, user, and organizational dimensions.
This can facilitate the design of technologies, their implementation in user and organizational settings, and the sustainability and
scalability of technologies.
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Introduction

The last two decades have seen rapid growth in artificial
intelligence (Al) initiatives in health care settings, driven by
the promises of improved treatment, quality, safety, and
efficiency [1]. Al systemsare computer algorithmsthat are able
to mimic human intelligence to perform tasks. They are
potentially capable of improving clinical decision-making.
However, there is currently a lack of high-quality evidence of
effectiveness, and an overoptimism regarding Al-based
technologiesin health care[2,3]. Many existing algorithms and
applications fail to scale and migrate across settings [4],
potentially leading to missed benefits or compromised patient
safety.

Evidence from other sectors, such as finance and retail, may
have limited applicability given the particular social, economic,
technical processes, and lega challenges of health and social
care settings [5]. Across the digital economy, Al has been
successfully applied to historical data, for example, infinancial
forecasting [6] or retail marketing, where personalized
advertisements have transformed consumer behavior [7]. These
methods are harder to deploy in the more complex and sensitive
settings of health and social care [5]. Thisis largely because
developers and implementers focus on tool development and
do not sufficiently draw on existing work to inform the
conception and design of technologies, their use and
optimization, and organizational strategiesto implement them.

Theory-informed approaches to evaluation can help to ensure
that technologies are effectively validated, implemented, and
adopted. They can a so help to ensure that systems do not result
in unintended negative consequences, such as inappropriate or
suboptimal care, exacerbated inequities, or clinician burnout
[8]. Theories seek to explain complex relationships at an abstract
level and can help to integrate a particular implementation with
the empirical evidence base. As such, theory-informed
evaluation frameworks can enable learning from experience,
thus guiding devel opers, implementers, and eval uators through
development, implementation, and optimization [9]. Ideally,
the real-world experience gathered during this process is then
used also to inform the refinement of evaluation frameworks.

Despite significant investments, there are currently only afew
examplesof the use of Al-based systemsin health care and most
systems are only beginning to be rolled out and embedded
[10-12]. This is in contrast to the finance and retail sectors,
where processes and products are standardized. To date, most
activity has focused on diagnostic image-based systems and
text or language processing, while complex precision medicine
efforts are in very early stages of development. We here call
for the increasing use of theory-informed approaches to
evaluation to help ensure that devel oped systems can be adopted,
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scaled, and sustained within settings of use, and are safe and
effective. Until now, this has not been done consistently, which
has resulted in limited learning and limited ability to transfer
learning across settings, as well as limited clinical and patient
reassurance. If done appropriately, the implicationsfor clinical
settings are significant, as validated new knowledge can be
disseminated and shared. This, in turn, obviates the need to
learn through experience that can be painful, dangerous, and
costly.

Unfortunately, despite increasing attention in research, the
current application of theory-informed strategy and evaluation
in Al practiceisrelatively limited in both health care and other
sectors [13]. This may be due to a lack of understanding
surrounding the theoretical literature (ie, why theories are useful
in practice and how they may be used by different stakeholders),
and the immediate focus of developers on demonstrating that
technology works. Politically and managerially, there may be
a drive to show modernization processes rather than making
clinical and organizational decisions based on evidence-based
outcomes. Where theories have been applied, these have been
driven by business approachesto val ue creation in organi zations
[14], or by approaches designed to influence consumer behavior
[15]. Inthese contexts, they have been strategically used to help
address a particular stakeholder need (eg, how to maximize
valuethrough implementing Al in organizations and how to get
consumers to accept Al technology). In health care, the range
of stakeholders and associated needs however varies
significantly from other sectors. While the managers and
policymakers may focus on value and efficiency, patients are
likely to be concerned about avoidableillness, and practitioners
may focus on workloads and potential liability.

It is therefore often difficult to know what needs (and
consequently what theory) to focus on and in what context. For
example, while devel opers of technology now increasingly draw
on cocreation with users to promote the adoption of Al, these
approaches may not consider organizational drivers, workflow
integration, multiplicity of stakeholders, or ethical considerations
inimplementation, thereby limiting the scalability of emerging
applications.

Theory-informed approaches to evaluation in health care must
be considered within their specific context, recognizing their
relative positions and identifying which needs they address at
various stages of the technology lifecycle. We aim to begin this
journey by providing a conceptual overview of existing
theory-informed frameworks that could usefully inform the
development and implementation of Al-based technologiesin
health care. Despite some differencesin technological properties
and performance between Al- and non-Al-based technologies
(Table 1) [16], many existing frameworks are likely to be
applicable.
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Table 1. Differences between artificial intelligence (Al)-based and non—-Al-based health IT.
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Applications Al-based Evidence Non-Al-based Evidence
Health services Al canhelpinoptimizingre- Limited evidenceinrelationto Non-Al-based approaches High potential of data-driven
management sourceallocation, scheduling, impact, mainly inrelationto  typically rely on manual pro- approachestoimprove organi-

Predictive medicine

Clinical decision
support systems

Laboratory and radi-
ology information
systems

Patient datareposito-
ries

Population health
management

Patient portals

Telehealth and tele-
care

Health information
exchange

and workflow management

by analyzing large data sets
and identifying patterns and
trends. For example, model-
ing of waiting times and un-
derlying reasons

Al algorithms can analyze
patient data, genetic informa-
tion, and medical records to
predict disease risks, treat-
ment outcomes, and responses
to therapies. This enables
personalized medicine and
targeted interventions

Al to analyze large amounts
of medical literature, patient
data, and clinical guidelines
to support clinical decision-
making

Useof Al to detect abnormal-
ities and to enhance the accu-
racy of diagnoses

Al agorithms can process pa-
tient data to identify trends,
patterns, and risk factors

Precision prevention approach-
es to identify populations at
risk and tailor preventative
interventions

Al-based symptom checkers
and triage tools

Online health assistants and
chatbots

Extracting and converting un-
structured or semistructured
datainto a standardized for-
mat

proof-of-concept [17,18]

Many proof-of-concept studies
but limited evidencein relation
to how outputs areincorporated
into clinical decision-making
[21,22]

Area of most focus, especially
inimaging applications, Al has
the potential to improve practi-
tioner performance[25,26], but
limited evidence surrounding
organizational impacts or pa-
tient outcomes

Most progress has been made
inrelation to imaging [29,30],
but limited attention has been
paid to integration with organi-
zational practices asabove[26]

Promising proof-of-concept
studies, but limited implementa-
tion [31,32]

Promising approachesto preci-
sion prevention in specific co-
horts, but limited implementa-
tion [35,36]

Inconsistent evidencein rela-
tion to symptom checkers and
triagetools, concernsinrelaion
to diagnostic accuracy [39,40]

Mixed evidence of effective-
ness usability and user satisfac-
tion [43,44]

The use of freetext datais till
initsinfancy but is promising.
Thereislimited dataon integra-
tion with existing ways of
working and organizational
functioning. [45,46]

cesses and human decision-
making for resource manage-
ment, scheduling, and work-
flow optimization. For exam-
ple, patient flow management
applications

Non-Al-based approachesre-
ly on statistical analysis and
clinical expertise to make
predictions about disease
risks, treatment outcomes, and
responses to therapies

Non-Al-based approachesre-
ly on the expertise and experi-
enceof health care profession-
ass, aong with clinical guide-
lines and published research,
to make clinical decisions

Non-Al-based diagnostics
typicaly rely onvisua inspec-
tion by health care profession-
asand manual analysis of
patient data

Patient data are stored in a
centralized repository

Understanding factorsthat in-
fluence health outcomes and
developing tailored interven-
tions

Accessto genericinformation-
al resources

Accessto genericinformation-
al resources.

Coding and transfer into stan-
dardized formats are often
done by health care staff

zational performance [19,20]

Many proof-of-concept stud-
iesbut limited evidencein re-
lation to how outputs arein-
corporated into clinical deci-
sion-making [23,24]

Demonstrated benefits for
practitioner performance and
patient outcomes in some ar-
easof use(eg, drug-drug inter-
actions) [27,28]

Thisis associated with infor-
mation overload but doestake
account of contextual factors

Some evidence that digitized
records and repositories can
lead to improved quality,
safety, and efficiency, but
hard to assess and take along
time to materialize [33,34]

Significant evidence of popu-
lation health interventions
[37,38]

Tailored informational re-
sources can improve satisfac-
tion, involvement, and deci-
sion-making [41,42]

Tailored informational re-
sources can improve satisfac-
tion, involvement, and deci-
sion-making [41,42]

Increased workloads for
heslth care staff and coding
are often not done accurately
[47,48]

We here provide aconceptual overview of existing frameworks,
focusing on practical applications of examples of existing
theory-informed frameworks and their potential application to
Al-based technologies in health care [49]. Frameworks were
selected as exampl esillustrating these extracted categories. This
work isnot intended to be exhaustive but to provide apragmatic
introduction to the topic for nonspecialists [50,51].

https://www.jmir.org/2024/1/e46407

To categorize frameworks in ameaningful way, we focused on
their potential area of application and the particular interest or
focus of various stakeholder groups who may need to draw on
existing experience to inform their current efforts to develop,
implement, and optimize Al-based technologies in health care
settings.
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Health IT Evaluation Frameworks and
Their Potential Application to Al

Overview

The 3 distinct dimensions identified are illustrated in Table 2,
along with potential applications of Al-based technologies in
health care and example use cases. These include frameworks
with a technology, user, and organizational focus. We discuss

Cresswell et al

each of these categories, the application of exemplary
frameworks, and practical implicationsfor various stakeholders
in the paragraphs bel ow.

However, it isimportant to recognize that the categorization of
frameworks provided here is a simplification. Various
frameworks have common and, in some instances, overlapping
elements. The categories presented are intended to facilitate
navigation and application.

Table 2. Examples of the focus of existing health IT evaluation frameworks and their potential application to artificial intelligence.

Focus of the Area of application Example theoretical  Practical implications  Stakeholders Examples
framework lenses
Technology « Informingtheconcep-  Human-centeredde- Actively anditeratively Endusersanddevel- A team had developed an algo-
focus tion and design of tech-  sign involve end usersin opers rithm to predict arterial fibrilla-
nologies system design and de- tion from electrocardiograms,
*  Tohelp Al?system de- velopment but prospective users stated that
velopersdesign asystem the information would not
that is usable and useful change their practice [10]
within intended use set-
tings
Userfocus o  Informingandhelpingto Sociotechnical syss  Planwithuserstoeffec-  End users, imple- «  IBM Watson encountered
optimizetheuseof tech- tems tively integratethe syss  menters adoption-related issues,
nologies temin their work prac- including usability and
«  Tohelp developers and tices and monitor perceived useful ness of
implementersunderstand progress over time their oncology software,

Organization- »
al focus

the various contexts of
useof Al aswell asunin-
tended consequences,
and tailor systemsto
maximize benefits and
minimize harms

Informing organizational
strategies to implement
technologies

Tohelp Al systemimple-
menters integrate Al
safely within existing
organizational structures

Institutional theory

Plan and monitor how
systems and their out-
puts are integrated
within and across orga-
nizational unitsand ex-
isting technological and
socia structures

End users, organiza-
tional stakeholders,
and implementers

which eventually led to
the abandonment

«  Thesystem increased the
workloads of doctors and
madetreatment recommen-
dations that were viewed
as unsafe by doctors [52]

« Babylon Health UK (an
Al-based remote service
provider) failed becauseit
did not fit with existing
health system financing
structures and cultures

«  Many patients from out-

and processes

sidethelocal areaenrolled
in the service, which
meant that the product was
not commercially viable
for local organizations
(53]

Al artificial intelligence.

Framewor ks With a Technology Focus

Many current Al applicationsin health care settings have been
developed by Al specialistsin laboratory settings. Consequently,
they have struggled to successfully trandateinto clinical settings
and deliver the performance achieved in research trials [54].
Frameworks with a technology focus can help to inform the
“conception and design” of technologies, thereby helping to
ensurethat Al system devel opersdesign asystemthat isreadily
implemented and useful within intended use settings. For
instance, techniques such as technology assessment and

https://www.jmir.org/2024/1/e46407
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requirements analysis can help to identify use cases, constraints,
and requirements that the new technology needs to fulfill.

Frameworks include, for example, design and usability
frameworks such as the Health IT Usability Evaluation Model
(Health-ITUEM) for evaluating mobile health technol ogy [55].
This includes assessment of subjective properties of the
technology from the perspective of users, which have been
shown to be crucial to user adoption of technology, but that
developers may not necessarily consider as a priority during
the development process, including ease of use and perceived
usefulness.
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Framewor ks With a User Focus

Whileuseiscrucia for the successful development of Al-based
technology, empirical work has shown that systems may be
used in ways other than intended, which may in turn result in
unanticipated threats to organizational functioning and patient
safety [56]. For example, users may develop workarounds to
compensate for usability issues of technologies, but these
workarounds may compromise the intended performance of a
system [57]. Frameworks that focus on the user of the
technology can help to address these issues and facilitate the
“optimization of technology use’. In doing so, they can help
developers and implementers understand the various contexts
of the use of Al-based technologies, as well as unintended
consequences, and tailor systems to maximize benefits and
minimize harms. For instance, a contextual analysis can help
to gain a deep understanding of the various contexts in which
atechnology will be deployed. Thisincludes examining cultural
and social factors, as well as user behavior, user expectations,
and existing systems or practices.

An exampleframework inthis context isthe Health Information
Technology Evaluation Framework (HITREF), which includes
an assessment of a technology’s impact on quality of care as
well as an assessment of unintended consequences [58].

Framewor ks With an Organizational Focus

Al-based technologies are not adopted in a vacuum but must
beintegrated within organizational contexts. Previouswork has
shown that organizational strategies to implement health IT
(HIT) and organizational cultures can have significant
consequences for adoption and use [59]. For example, lack of
integration with existing health information infrastructures can
slow down system performance and impede practical use, and
hence, impact adversely on safety and user experience [60].
Frameworks with an organizational focus can facilitate the
development of “organizational strategies’ to implement new
technologies. In doing so, they can help Al systemimplementers
integrate Al safely within existing organizationa structuresand
processes. For instance, these can hel p to inform communication
strategies, training programs, and support mechanisms to help
users understand the benefits and risks of Al technologies and
adapt to new roles and responsibilities.

An example of aframework with an organizational focusisthe
Safety Assurance Factors for Electronic Heath Record
Resilience (SAFER) guides, which help implementing
organizations identify existing risks and facilitate the
development of mitigation strategies to promote the effective
integration of technol ogieswithin organizational processes[61].

Discussion

A range of theory-informed eval uation frameworks for diverse
kinds of HIT already exist [62]. Although not all of these may
be relevant for Al-based applications, many aspects of existing
frameworks are likely to apply. Exploring the transferability of
these dimensions, therefore, needs to be a central component
of work going forward [63].

Existing frameworks examine various aspects of technology
design, implementation, adoption, and optimization. On the

https://www.jmir.org/2024/1/e46407
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most basic level, they can be distinguished according to their
focus, which then influences their application and context of
use. A simplified overview of selected HIT evauation
frameworks and their potential application to Al is shown in
Table 2. Frameworkswith atechnology focus can help toinform
the conception and design of technol ogies through actively and
iteratively involving end users, bridging the gap between
technology development and application. This can, in turn,
mitigate risks around nonadoption due to a lack of need or
actionable system outputs. Frameworks with a user focus can
help to ensure that systems are effectively embedded with
adoption contexts and thereby mitigate the risk of systems not
being used or not being used as intended. Finally, frameworks
with an organizational focus can help to ensure that systemsfit
with existing organizational structures, and thereby help to
ensure sustained use over time and across contexts.

We recommend that researchers, implementers, and strategic
decision makers consider the use of existing theory-informed
HIT evaluation frameworks before embarking on an Al-related
initiative. This can help to mitigate emerging risks and maximize
the chances of successful implementation, adoption, and scaling.
To achieve this, existing and emerging guidelines for the
evaluation of Al must promote the use of theory-informed
evaluation frameworks.

Although many of the frameworks are well-known in the
academic clinical informatics community, there is an urgent
need to incorporate them into general Al design,
implementation, and evaluation activities, as they can help to
facilitate learning from experience and ensure building on the
existing empirical evidence base. Unfortunately, thisis currently
not routinely done, perhaps reflecting disciplinary silosleading
to lessons having to be learned the hard way. This, in turn,
potentially compromises the safety, quality, and sustainability
of applications. For example, although Al applications in
radiology are now getting more established, the existing
evidence base focuses on demonstrating effectiveness in
proof-of-concept or specific clinical settings (the technology
dimension in Table 2) [25]. Wider organizational and user
factors are somewhat neglected, potentially threatening the
wider sustainability and acceptability of such applications.

Conclusions

We aimed to provide a conceptual overview of existing
theory-informed frameworks that could usefully inform the
development and implementation of Al-based technologiesin
health care, and we identified several frameworks with
technological, user, and organizational foci. Future research
could involve conducting a systematic review based on this
pragmatic overview to synthesize existing evidence across
evaluation frameworks, spanning the dimensions of technol ogy,
user, and organization.

Evaluation of Al-based systems needs to be based on
theoretically informed empirical studies in contexts of
implementation or use to ensure objectivity and rigor in
establishing the benefits and thwarting risks. This will ensure
that systems are based on relevant and transferable evidence
and can be implemented safely and effectively. Theory-based
HIT evaluation frameworks should be integrated into existing
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and emerging guidelines for the evaluation of Al [64-66]. The Drawing effectively ontheory-based HIT evaluation frameworks

examples of frameworks provided could also help to stimulate  will help to strengthen the evidence-based implementation of

the development of other related frameworks that can guide Al systemsin health care and help to refine and tailor existing

further evaluation efforts. theoretical approaches to Al-based HIT. Learning from the
wealth of existing HIT evaluation experience will help patients,
professionals, and wider health care systems.
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