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increasing trust and preventing harm.
© 2024 The Authors. Published by Elsevier Ltd on behalf of The Royal College of Radiologists.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/
4.0)).

Article history:

Received 25 August 2023
Received in revised form
24 January 2024

Accepted 29 January 2024

accountability, trust, safety, and governance.’ Until recently,
the post-market surveillance of Al tools for clinical use in
radiology has been relatively undefined,* and there are
concerns about the differences between published and real-
world performance of approved Al apps, as well as human
factors, which consider the way humans will interact with

Introduction

There has been exponential growth in radiology artificial
intelligence (Al)-related publications,’ teamed with an
increasing number of Food and Drug Administration (FDA)
and conformité européenne (CE) marked radiology Al

software as medical devices for clinical practice. Of the 692
Al-enabled FDA authorised medical devices in October
2023, 77% were primarily radiology focused?; however, the
implementation of Al applications (apps) in routine practice
is limited by practical concerns around reliability,

Al°

Radiologists are essential partners in ensuring the safe
deployment and usage of Al apps, by collaborating with
multidisciplinary teams to take part in clinical audit to
evaluate the “real-world” performance of such tools. The
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grounds for a registry of Al deployed apps in radiology have
been made,° and the Royal College of Radiologists has
suggested proposals to overcome barriers to Al imple-
mentation in imaging.” Having an independent, centrally
coordinated data trail of audits at different sites with
deployed Al apps would be a major benefit. Standardising
the way in which Al apps are evaluated will also allow for
more direct comparisons between competing products. In
addition, there may be opportunities to devise a bench-
marking programme using retrospective expertly anno-
tated datasets from multiple sites.

Reporting guidelines such as DECIDE-AI have been
developed to help appraise early stage clinical studies of Al
apps,® as well as audit techniques for potential algorithmic
errors.” Audit of Al algorithms presents additional chal-
lenges and factors such as generalisation and adaptability,
where an algorithm struggles to perform beyond its initial
trained datasest. This inherent training bias should be
considered when a tool is a applied to an unseen dataset
which may include underrepresented cases. In addition,
due to the risk of algorithmic errors, system failures and
technical glitches affecting algorithm accuracy, safety and
reliability should be included within the audit as these er-
rors may lead to incorrect diagnoses or delays in patient
care.

In this article we review the aims of clinical audit and the
concept of beyond compliance, and then present proposed
methods for “in the lab” benchmarking of approved apps, as
well as clinical surveillance of Al applications once
deployed.

Why should we undertake independent
audit of Al applications?

To bring Al apps to market, industry developers need to
demonstrate appropriate diagnostic performance to ach-
ieve regulatory approval, such as CE-marking in Europe and
FDA approval in the USA. The industry developers are also
responsible for providing post-marketing surveillance;
however, this demand will inevitably be constrained by
conflicts of interest, with one study suggesting fewer than
half of studies for CE-marked products were independent
from vendors.'” Concerns about reliability and transparent
audit of performance in clinical practice have led to calls for
improved, independent, and comprehensive post-
marketing surveillance of Al devices, including by the
American College of Radiology.'!

A systematic review of machine learning models for the
diagnosis and prognosis of COVID-19 from chest radiog-
raphy (CXR) or computed tomography (CT) images found
that none of the models were of potential clinical use
because of significant flaws in the methodology and un-
derlying biases.'” In Europe, a study reviewing CE-marked
Al apps in imaging in 2021 found that only half of the
available evidence was independent, only 18% showed po-
tential clinical impact and 64% of the approved Al apps

lacked peer-reviewed evidence of efficacy.” In the USA, a
study looking at FDA-approved Al apps found a general lack
of transparency and adequate evaluation datasets, with
comprehensive prospective evaluation only performed for
four of the identified 130 Al apps.”'® The recently published
early value assessment of CXR for detection of early lung
cancer was informed by evidence synthesis that found “no
applicable evidence on which to evaluate the impact of
adjunct Al software for analysing chest X-rays from people
referred from primary care for suspected lung cancer” and
as such made appropriate research recommendations.'

A significant challenge facing Al applications is how
vulnerable their performance can be to systematic differ-
ences between their training data and the “real-world” data
seen in clinical practice. Algorithm performance can vary in
different environments (including different machine ven-
dors, PACS systems, and Al deployment platforms)'” and can
drift as the environmental factors change, including patient
population, resulting in significantly worse performance
when evaluated at other sites.>'® This is of particular
concern to Al apps that have been predominantly trained on
cohorts from a small number of sites with limited geographic
diversity."” Al is vulnerable to “hidden stratification”, where
models can perform well overall but underperform on
particular subgroups, and this has been shown to cause
clinically meaningful failures in medical imaging AL'®

To ensure the safe and effective implementation of Al in
clinical settings, the concerns around Al shortcomings must
be addressed. This presents an opportunity for clinical ra-
diologists to support independent evaluation and validation
of Al Organisations such as the Royal College of Radiolo-
gists, working together with other key partners, could
provide a framework for clinical audit of radiology Al apps
both “in the lab” (also known as “in silico”) and in real-
world environments, providing curated validation datasets
of “ground truth” for benchmarking new apps (see Fig 1).
Those apps that are validated successfully could receive
kite-marking or equivalent. In addition, this framework
could be supplemented by evaluation and feedback of other
important factors limiting clinical Al adoption, such as hu-
man factors and ease of use. It is likely that the Royal College
of Radiologists will need to work in partnership with other
organisations, and these proposals aim to go hand-in-hand
with national programmes such as the NHS Al Lab'® and the
Al buyer’s guide,’’ as well as initiatives aiming to improve
trust and generalisability in clinical Al such as the Health Al
Partnership,”! Coalition for Health AL?> STANDING
together”> and other commercial and academic coalitions.

When a technology is new and relatively untested in a
field, professional confidence is lacking and there is a sense
of a need to go above the baseline level of validation and
compliance. In this article, we propose an approach that
goes beyond standard regulatory compliance for Al apps
that are approved for marketing, including both indepen-
dent benchmarking in the lab as well as independent clin-
ical audit in practice, with the aims of increasing trust and
preventing harm.
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Figure 1 Flow diagram for proposed Al app deployment and
evaluation.

Beyond regulatory compliance: an approach
to ensuring the safety and effectiveness of
deployed Al applications

Previous authors have compared evaluation of Al to
pharmaceuticals and surgical innovation.® The concept of
“beyond compliance” has been gaining traction in recent
years, as organisations seek to ensure that their products
and services are safe and effective for their intended use.?*
This approach transcends mere adherence to minimum
regulatory requirements and instead concentrates on pro-
actively identifying and mitigating potential risks and is-
sues at an early stage.

The notion of “beyond compliance” has been particularly
instrumental in the field of surgery, specifically in the
context of orthopaedic implants.”#?> This primarily in-
volves the evaluation of new implants followed by their

continuous monitoring. The genesis of this concept in sur-
gical practice can be attributed to the significant clinical
failures witnessed in certain metal-on-metal total hip re-
placements during the early part of the previous decade,
despite initial approval by regulatory bodies such as the FDA
and the Medicines and Healthcare products Regulatory
Agency (MHRA).?%~%°

In the surgical domain, “beyond compliance” encom-
passes both pre-market assessment and post-market sur-
veillance, incorporating various data sources including
clinical research, user experiences, registry data, and
adverse event analyses.?>?%263931 Regular feedback loops
are established between manufacturers and the “beyond
compliance” committee and advisors, fostering a proactive
environment for identifying and resolving potential risks
before they escalate. By employing this approach, early in-
dicators of potential issues can be detected, prompting
appropriate actions and recommendations. Consequently,
this approach not only facilitates early risk identification
but also bolsters confidence in the assessed products or
services, thereby enhancing their overall impact.

A similar approach could be extended to the evaluation
of clinical Al applications, particularly following deploy-
ment, to ensure their performance, effectiveness, and
safety.>”3 Potential risks could be detected at an early
stage, facilitating local problem-solving and shared learning
on a national scale, ensuring avoidance of clinical harm,
enhancing the overall safety and effectiveness of Al appli-
cations. By demonstrating that an Al application has un-
dergone thorough evaluation and satisfies high standards of
safety and effectiveness, with planned on-going indepen-
dent clinical audit, users are more inclined to trust the
products or services being evaluated and feel assured in
their usage. Consequently, this facilitates greater adoption
of Al applications and amplifies their overall impact.

One ongoing challenge is the lack of health economic
evaluation for many commercially available Al applications.
A recent review from the National Institute for Health and
Care Excellence in the UK (NICE) has published an early
value assessment of Al-apps to analyse CXRs for suspected
lung cancer, which identified the need for further evi-
dence,** which may be collected through the NHS England
Al Diagnostic Fund (AIDF).>

“In the lab” evaluation of Al applications

Retrospective studies have suggested that Al can achieve
or even exceed human reader cancer detection perfor-
mance36; however, studies that are based on an evaluation
of an Al system using data collected retrospectively are
subject to numerous biases and present an inferior level of
evidence compared with prospective studies. The relevant
dataset may not always perfectly reflect the final population
in which the tool will be used. On the other hand, pro-
spective evaluation of Al is time-consuming and requires
large sample sizes so more difficult cases are included in
sufficient numbers. There are several methods to undertake
retrospective testing, none of which are perfect and each
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has pros and cons. A real-life dataset reflecting the popu-
lation may be challenging to collect and annotate. An
alternative approach is one that offers speedy evaluation
against verified case collections that include greater pro-
portions of the more challenging cases (i.e., an enriched
dataset).

Poor reporting of in-lab evaluations of Al applications
continues to pose a challenge in the clinical applicability of
Al models.’’ To address this issue, recommendations have
been devised based on systematic reviews of Al studies.*®
These recommendations emphasise the need for trans-
parent reporting of data sources, including comprehensive
descriptions of cases, eligibility criteria, and clinical char-
acteristics to enable the assessment of the model’s validity,
relevance, and generalisability. Additionally, the description
of model training should provide sufficient detail to ensure
reproducibility. Consistency in reporting model perfor-
mance enables meaningful comparisons between different
models. Furthermore, reporting failures and limitations of
the models plays a vital role in understanding potential
biases inherent in Al models. Implementing these recom-
mendations would greatly improve the overall quality and
interpretability of in-lab evaluations of Al applications.

In addition, concern has been raised that changes in the
operating environment over time can lead to less reliable
algorithm performance.>® This may be due to changes in the
screening population, such as patient age or ethnic di-
versity, or even changes in other software, hardware, or
applications deployed alongside the AL“° In the example of
breast cancer screening, using real-life data to assess per-
formance is problematic because obtaining an accurate
measure of sensitivity and specificity in a timely fashion is
difficult as true sensitivity may not be known for many
years until interval cancer data are collected.*! Similarly, for
specificity measurement, the proportion of truly disease-
free patients correctly identified as negative by Al will not
become apparent until after the next screening round.
Consequently, it may take several years for poor algorithm
performance to be noticed by which time women may be
harmed or the reputation of Al in breast cancer screening
damaged.

The NHS Breast Screening Programme routinely uses a
test set external quality assurance (EQA) scheme called
Personal Performance in Mammographic Screening (PER-
FORMS) to assess reader performance.’ PERFORMS is
accredited by the Royal College of Radiologists and the
European Accreditation Council for Continuing Medical
Education as it helps participants to improve readers skills
and knowledge through Continuing Professional Develop-
ment (CPD), remain up to date in their specialities and
comply with the relevant professional standards, providing
them with appropriate CPD credits. As part of the scheme, a
large dataset containing challenging two-dimensional (2D)
full-field digital mammograms (FFDM) cases from multiple
diverse sources, equipment vendors, and different
geographic areas has been annotated by a panel of expert
radiologists, each one of them with >20 years of experience.

Part of the PERFORMS dataset has already been used to
compare the performance of human readers and a

commercially available Al algorithm interpreting test sets.
Each breast was considered separately, and the highest
score was used to assess performance using a pre-defined
recall threshold. Sensitivity, specificity, and ROC analysis
was used to compare the performance of Al and human
readers retrospectively (see Fig 2).

A similar platform of agreed use cases (e.g., stroke CT,
lung cancer screening or CXR) of ground truth could be
hosted by the Royal College of Radiologists for “in the lab”
evaluation to ensure the safe deployment of Al apps, by this
independent benchmarking approach. Diagnostic perfor-
mance metrics such as sensitivity, specificity, negative
predictive value, and positive predictive values will differ
between a natural and “enriched” dataset. Regularly eval-
uating Al with an external quality assurance test set scheme
has advantages as the outcome for each case is already
known. An advantage of using cases from EQA test sets like
PERFORMS is that Al performance can be immediately
compared to a large cohort of human readers who have all
read identical cases from the same patient population, thus
providing a robust performance comparison between hu-
man readers and Al. Regular retesting on an up-to-date
benchmark dataset will help detect drift in algorithm per-
formance as operational factors change, although the fre-
quency of retesting may vary between applications. It is
important to note that, currently, re-training algorithms
with local real-world data may invalidate the intended use
authorisation aspects of the software and require further
regulatory approval.

Developing validation datasets for
benchmarking

Cases used in benchmarking datasets should reflect the
population for the intended use. In the case of Al apps for
screening tests, cases must be drawn from the screening
programme where the Al product is to be deployed. For
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Figure 2 Al and human performance in mammographic screening.

Clinical Radiology, https://doi.org/10.1016/j.crad.2024.01.026

Please cite this article as: Ross ] et al., Beyond regulatory compliance: evaluating radiology artificial intelligence applications in deployment,




J. Ross et al. / Clinical Radiology xxx (XxXx) Xxx 5

example, in lung cancer screening, cases should only be
included from active or recent smokers deemed high risk of
lung cancer using the same risk prediction models utilised
in the screening programme. In breast cancer screening, a
test set for evaluating Al performance in the UK breast
screening would consist of mammograms from the women
age between 50 and 70 years from the UK National Health
Service Breast Screening Programme (NHSBSP).

The dataset must also account for the heterogeneity
observed within the real-life screening population. Taking
the example of breast cancer screening, datasets should
ideally include an accurate proportion of screen-detected
cancers, interval cancers, radiological feature types,
women with a personal history of breast cancer, women
from different ethnic groups, mammograms acquired on
equipment from different vendors, with the range of post-
image acquisition processing software used throughout
the NHSBSP. For any dataset used for benchmarking, it is
critical to consider how representative the test population is
compared to the patient population for this to be a fair test.

Accurate and reliable outcome information is required
for each case in a test set. In order to provide ground truth
information, cancer cases must be confirmed by biopsy.
Normal or benign cases must either be confirmed by biopsy
or adequate follow-up. For instance, for mammographic
screening a mammogram should only be called truly
normal when a normal outcome is also recorded for the
mammogram at the next screening round, so for the
NHSBSP this would be 3 years later as women are invited for
screening every 3 years.

Real-world clinical evaluation post
deployment

Al that has been deployed in the clinical setting can be
evaluated prospectively to ensure safety and effectiveness.
An example clinical audit tool is provided (see Table 1).
Validating Al performance on local data will be important to
help build clinicians’ trust, allowing the comparison of both
model performance and the impact on clinical outcomes.
Clinical service evaluation will be able to assess the fre-
quency of correct and misdiagnosis by the Al models, and
compare cases where Al outperforms and underperforms
compared to clinician readings. Examining these discordant
cases can help identify areas where Al apps are vulnerable
to underperform. Crucially, the subsequent clinical out-
comes of these cases can be explored, allowing quantifica-
tion of both adverse outcomes where Al could lead to a
negative impact on patient care, as well as positive cases
where the use of Al led to a beneficial clinical outcome or
improved radiology productivity. Centrally coordinated
audit and publication of these clinical evaluations is also
important, as it will allow early identification of problems
that may be occurring at multiple different departments
and hospitals, with dissemination of the information to the
wider community. This would also enable health economic
assessments to be coordinated to calculate the cost-
effectiveness of Al apps.

Table 1
Suggested components to include in Al clinical audit template.

Project title

Responsible clinician

Name of Al vendor, product name and version

Name of PACS vendor

Name of RIS vendor

Name of Al deployment platform (if applicable)

Integration method (e.g. PACS, RIS or Al deployment platform)

Identification of integration problems with hospital systems

Target clinical problem

Target population (e.g. age, gender, ethnicity, co-morbidities)

Inclusion and exclusion criteria for target population (if applicable)

Potential biases related to audit population

Measures of expected performance (e.g. diagnostic and/or triage
performance, true positive, false positive, true negative, false
negative)

Description of perceived risks

Basis and process for diagnostic reference standard

Evaluation date range

Processing time

Exclusion rate (proportion and number of eligible cases)

Failure rate (the proportion of eligible cases the tool failed to work for
as expected)

Measured performance of Al tool independent of human read

Measured performance of Al tool with human in the loop

Clinical outcome measures

Discrepancy rate (rate at which clinician and Al tool agree)

Testing for automation bias

Perceived clinical impact of Al per case — beneficial, neutral, or
negative (such as recall rate, number of cases which require non-
invasive or invasive follow-up testing, outcome of follow-up
testing)

Acceptance by users

Acceptance by patients

Carbon impact of processing

Comparison to historical data prior to Al use

Other issues encountered

Recommendation and feedback to sites and vendors

This table provides some suggested topic areas that could be included in Al
audits, which may differ depending on the type of tool being evaluated and
the stage of deployment.

Al artificial intelligence; PACS, picture archive and communication system;
RIS, radiology information system.

Clinical audit can be used to explore issues of bias and
fairness, comparing Al performance and patient outcomes
stratified by demographic data such as age, sex, and
ethnicity. Real-world evaluation can also assess technical
performance, in particular measuring how often Al appli-
cation fails to work at all on scans in the workflow. The
frequency of model use as a percentage of eligible patients
can be calculated, and the evaluation can explore the rea-
sons for Al failure, such as whether the Al tends to fail on
cases that radiologists assess as being more challenging to
report. Information captured during evaluation could be
very helpful for sharing practical lessons about what
worked and what did not during deployment. This could
cover system usability, the approvals process, integration
with hospital systems, and examples of deviation of
human—computer interactions from expected use. Other
measures might include the time taken for training radiol-
ogists, radiographers, and the PACS team, and radiologists’
perception of the integration into clinical workflow. In

Clinical Radiology, https://doi.org/10.1016/j.crad.2024.01.026

Please cite this article as: Ross | et al., Beyond regulatory compliance: evaluating radiology artificial intelligence applications in deployment,




6 J. Ross et al. / Clinical Radiology xxx (Xxxx) Xxx

addition, patient perspectives on the use of Al for their
diagnosis and treatment planning can be evaluated in order
to understand the impact on patient trust.

There may be disease- and context-specific consider-
ations for different Al tools and environments. For example,
an Al tool that suggests diagnoses for CXRs performed in the
emergency department may be read by emergency
department staff prior to being reviewed by a radiologist.
The evaluation will need to determine the appropriate
benchmark against which the AI model should be
measured, be that a newly qualified doctor reading of a scan
or a consultant radiologist’s report. Although some models
may be able to be evaluated as simple yes/no diagnoses,
others may be subtle, requiring assessments of likelihoods
or heat maps. Several Al applications have in built tools for
simplifying error reporting, such as a button to highlight
cases where the Al response was incorrect (or particularly
good), which should feed into evaluation.

This evaluation can be used to design longer-term post-
marketing surveillance, to assess whether the Al continues
to perform over time. Regular reporting and threshold
alerts could be used to identify when there is a risk of data
drift, such as a significant change in either the input data
(such as from a new scanner) or the Al outputs. Special
consideration should be given to assessing the impact of
“automation bias”, the propensity for humans to favour
suggestions from automated decision-making systems even
when they are incorrect.*” Federated learning is increas-
ingly considered in medical imaging AL*> and federated
networks could be used to support evaluating algorithms
across several institutions.**

These evaluations may not address some of the wider
challenges that hospitals and institutions may have in
adopting clinical Al, such as identifying whether current
digital and informatics resources are able to deal with the
additional demands of Al systems, the cost of the system in
relation to improvements in care, or improving the involve-
ment of patient and public involvement in the successful
acceptance of Al in patient pathways and clinical workflows.

Conclusion

Streamlined and expedited implementation of Al apps
may be accelerated through providing robust, multicentric,
real-world clinical Al audit data of the applications in
radiology practice. Independent audit going beyond regu-
latory compliance will help address safety and effectiveness
concerns, allow for earlier identification of errors, and
provide benchmarking. This could consist of evaluation of
Al applications “in the lab” on specific validation datasets,
and by prospective centrally coordinated audit in the clin-
ical setting. Validation datasets based on the natural patient
population should be used where available, but the use of
enriched datasets may be practical to allow safe deploy-
ment and appraisal in a timely manner when facing a rapid
deployment of Al tools. These evaluations could also pro-
vide health economic evidence for the cost effectiveness of

these applications to support business planning. Given the
exponential growth of possible Al applications, now is the
time to agree a framework for evaluating these products
with the key stakeholders.

Glossary

This paper includes a glossary of terms used in Al
research (see Table 2), and an overview of risks and miti-
gations in clinical Al development and deployment (see
Electronic Supplementary Material Fig. S1).

Table 2
Glossary.

Term Definition

Artificial Intelligence The capability of a machine to imitate

(AI) intelligent human behaviour. In the context of
radiology, Al can be used to analyse images and
detect abnormalities, among other tasks
A modelling error that occurs when a function
is too closely fit to a limited set of data points.
An overfitted model may perform well on
training data but poorly on new, unseen data
The change in input data distribution over time.
This can lead to a decrease in model
performance if the model is not updated or
retrained to reflect the new data distribution
A situation where an Al model performs well
overall but underperforms on certain
subgroups. This can lead to significant failures
in clinical settings
The process of comparing business processes
and performance metrics to industry bests or
best practices from other industries. In the
context of Al in radiology, this could involve
comparing the performance of different Al apps
against each other or the reference standard of
practice

Model overfitting

Data drift

Hidden stratification

Benchmarking

CE marking A certification mark that indicates conformity
with health, safety, and environmental
protection standards for products sold within
the European Economic Area

FDA approval The Food and Drug Administration (FDA)

approval signifies that the agency has
determined that the benefits of the product
outweigh the known risks for the intended use
The practice of monitoring the safety of a
pharmaceutical drug or medical device after it
has been released on the market

The propensity for humans to favour
suggestions from automated decision-making
systems even when they are incorrect

The term refers to the accuracy of a dataset, or
the certainty that the dataset is a true
representation of the world’s features. Ground
truth is used as a standard to train models and
evaluate their performance. It is crucial for
supervised learning where the model learns
from labelled data and for validating the results
of unsupervised learning

A sample of data used to provide an unbiased
evaluation of a model fit on the training dataset
while tuning model hyperparameters

Post-marketing
surveillance

Automation bias

Ground truth

Validation datasets
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