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Digital therapeutics (DTx) are a somewhat novel class of US Food and Drug Administration-regulated software that 
help patients prevent, manage, or treat disease. Here, we use natural language processing to characterise registered 
DTx clinical trials and provide insights into the clinical development landscape for these novel therapeutics. We 
identified 449 DTx clinical trials, initiated or expected to be initiated between 2010 and 2030, from ClinicalTrials.gov 
using 27 search terms, and available data were analysed, including trial durations, locations, MeSH categories, 
enrolment, and sponsor types. Topic modelling of eligibility criteria, done with BERTopic, showed that DTx trials 
frequently exclude patients on the basis of age, comorbidities, pregnancy, language barriers, and digital determinants 
of health, including smartphone or data plan access. Our comprehensive overview of the DTx development landscape 
highlights challenges in designing inclusive DTx clinical trials and presents opportunities for clinicians and researchers 
to address these challenges. Finally, we provide an interactive dashboard for readers to conduct their own analyses.

Introduction
Digital therapeutics (DTx) are a somewhat novel class of 
US Food and Drug Administration (FDA)-regulated  
software that help patients prevent, manage, or treat 
disease. Beyond providing additional therapeutic 
options for patients, the method of delivery of DTx also 
enables the delivery of continuous and personalised 
care at scale.1,2 Examples of approved DTx include the 
Propeller platform, which uses smart devices and paired 
consumer applications to improve medication 
adherence and reduces hospital admissions in patients 
with asthma and chronic obstructive pulmonary disease 
(COPD),3,4 and EndeavorRx, a video game that helps 
improve attention function in children with attention-
deficit hyperactivity disorder.5 Although DTx have the 
potential to help bridge gaps in access to care, there are 
concerns that these software will require access to 
compatible devices or high digital literacy, and widen 
disparities in health outcomes.1,6 There is also substantial 
interest from health-care and regulatory institutions to 
analyse the clinical development landscape and quality 
of clinical evidence available for DTx.6,7 

ClinicalTrials.gov is the main website in the USA for 
registering clinical trials, as required by the FDA 
Amendments Act of 2007.8 Several studies have previously 
used the ClinicalTrials.gov registry to characterise the 
level of clinical evidence for drug therapeutics, including 
analysis of clinical trial design and applicability of trial 
results to real-world populations.9–11 Analogous studies of 
clinical trials involving digital interventions12–14 have 
focused on structured data fields, and only a few have 
attempted to provide additional insights through manual 
free-text analysis. However, manual analysis is time-
consuming, requires specialised expertise, and is difficult 
to keep up to date as new DTx trials occur, and so 
automated tools are necessary to provide real-time 
insight into emerging trials. 

In the past 5 years, developments in natural language 
processing (NLP) have made automated information 

extraction readily available for biomedical text. Software 
tools, such as SciSpacy, provide open-source access to 
text analysis pipelines and NLP models, which are 
pretrained on large biomedical datasets and can achieve 
high accuracies on information extraction and other 
language tasks.15,16 These pipelines can also map extracted 
concepts to existing biomedical vocabularies, such as 
MeSH categories, for standardisation and downstream 
analysis. Several NLP methods have been applied to 
analyse drug therapeutic clinical trials,11,17 but have not yet 
been used to characterise the clinical development of 
DTx. 

Given the increasing availability of DTx and their 
corresponding clinical trials, we did a systematic review  
to describe the characteristics of trials on DTx. We took 
advantage of modern NLP methods to better understand 
the characteristics of DTx clinical trials and the quality of 
evidence available for these novel therapeutics. Finally, 
we provide an interactive dashboard for readers to do 
their own analyses of DTx studies using structured and 
unstructured data fields from ClinicalTrials.gov. 

Methods
Search strategy and selection criteria
Digital therapeutics clinical trials were identified 
through the ClinicalTrials.gov application programming 
interface by use of a set of 27 search terms related to 
DTx, including “digital therapeutic”, “digital therapy”, 
“smartphone”, “mobile app”, and “video game” 
(appendix p 1). Searches were limited to the fields 
for BriefSummary, BriefTitle, InterventionName, 
InterventionDescription, Keyword, DetailedDescription, 
EligibilityCriteria, or OfficialTitle, and only trials 
registered for FDA-regulated devices and not listed as 
having a “basic science purpose” were included. We 
used the ClinicalTrials.gov field IsFDARegulatedDevice 
to identify trials “studying a device product subject to 
section 510(k), 515, or 520(m) of the Federal Food, Drug, 
and Cosmetic Act”.18 Thus, even if FDA clearance or 

See Online for appendix
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approval had not been granted for any of these trials, 
there was a high degree of confidence that they were for 
FDA-regulated products. Basic science studies were 
identified with the DesignStudyPurpose field and were 
removed to focus on trials of DTx with an established 
mechanism of action. By use of the OverallStatus field, 
trials that had been terminated, withdrawn, suspended, 
or had an unknown status were also excluded to limit 
analysis to active trials. The scope of the systematic 
review was also limited to studies with start dates 
occurring after 2010, or expected completion dates listed 
after 2030. Following these filtering steps, the full record 
from each remaining DTx trial was then extracted from 
the complete ClinicalTrials.gov dataset, which was 
downloaded on Aug 3, 2022. We report our findings in 
line with PRISMA guidelines. Since this systematic 
review does not assess health outcomes, no protocol is 
registered on PROSPERO. The full list of data fields 
available for each trial can be found on ClinicalTrials.gov 
on the Protocol Registration Data Element Definitions 
page.18

Analysis of clinical trial characteristics by use of 
structured data fields
We compared the number and duration of interventional 
and observational trials, with duration calculated as the 
number of years between reported start and completion 
dates. Clinical trials were also analysed on the basis of 
sponsor and collaborator types, visualised with a Sankey 
diagram. To understand the geographical distribution of 
clinical trial facilities in the USA, each entry in the 
LocationState field was mapped to a state code with 
the pgeocode software package (version 0.3.0) and the 
number of trials in each state was plotted as a choropleth 
map. The density of clinical trial facilities in each state 
was also calculated as a ratio of trial locations to the 

population of each state, by use of the 2021 estimated US 
Census Bureau values.19

We analysed correlation between the number of clinical 
trial locations and the area deprivation index (ADI), a 
metric of socioeconomic status in each region. ADIs for 
the five states with the highest number of clinical trial 
locations were downloaded from the University of 
Madison Neighborhood Atlas and mapped to each listed 
facility’s zip code.20,21 National and state ADIs were 
analysed, with national ADI score given as a percentile 
across the entire country. At the state level, ADI is 
provided on a scale from 1 to 10. Higher scores represent 
greater socioeconomic disadvantage for both state and 
national ADIs. Only trials with available features in each 
data field were considered for these analyses (appendix 
p 2).

Extraction of condition and eligibility criteria by use of 
NLP
Although ClinicalTrials.gov has an internal algorithm to 
map conditions listed with standardised biomedical 
vocabulary to MeSH terms, these terms do not 
correspond to the main MeSH branches and are not 
available for all clinical trials.22 To create standardised 
mappings for each clinical trial, medical conditions from 
the condition free-text field were extracted and mapped 
to MeSH terms by use of the MeSH EntityLinker from 
SciSpacy (version 0.5.0),15 with only the first match 
selected for each condition. Resulting terms were 
grouped into MeSH categories and the most frequent 
heading was selected for trials with multiple conditions, 
with priority given to values under the  branches C 
(diseases) and F (psychiatry and psychology). MeSH 
terms were manually reviewed to assess the validity of 
the MeSH EntityLinker on this dataset. With conditions 
classified into standardised clusters, we compared 
enrolment counts in each MeSH heading, focusing on 
non-phase 1, interventional trials in groups with fewer 
than ten studies. The EnrolmentType field was used to 
differentiate between actual and anticipated enrolment 
for each trial.

To analyse the most common types of eligibility criteria, 
we used the BERTopic topic modelling technique 
(version 0.11.0),23 which clusters text embeddings to 
produce interpretable, semantically cohesive clusters. 
BERTopic has been used in previous studies of 
biomedical text and has been shown to generate more 
coherent topics compared with Latent Derelict Aldrich or 
other topic modelling methods.24 To generate embeddings 
for BERTopic, text from the eligibility criteria field was 
first split into inclusion and exclusion criteria, with each 
line considered a separate document. A language model 
from SciSpacy pretrained on biomedical text (en_core_
sci_lg) was then used to generate embeddings for each 
eligibility criterion. The SciSpacy embeddings encode 
semantic relationships between biomedical terms, 
allowing related terms to be grouped into more 

Figure 1: Study selection
Identification of 449 DTx clinical trial datasets from a search of ClinicalTrials.gov 
by use of 27 search terms and additional ClinicalTrials.gov data filters. 
DTx=digital therapeutics. FDA=US Food and Drug Administration.

8615 records identified from ClinicalTrials.gov 
and screened for eligibility 

449 clinical trial records retrieved and 
included in systematic review 

8166 excluded
1229 inactive trials

209 terminated
191 withdrawn 

29 suspended 
800 unknown 

132 with start date before 2010
33 with completion date after 2030

6763 not listed as US FDA-regulated device
9 with design primary purpose listed as 

basic science

For the data repository see 
https://github.com/symerio/
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semantically cohesive topics, unlike conventional 
methods that cluster words only on the basis of their 
frequency and co-occurence.15 A BERTopic model with 
default settings was used to generate topics from these 
embeddings, and the top five topics for each eligibility 
criterion were mapped back to the corresponding clinical 
trial to analyse the percentage of each topic occurring in 
each MeSH cluster. Again, a subset of the 200 inclusion 
and exclusion criteria were manually reviewed to confirm 
that the eligibility criteria were mapped correctly to these 
topics. Only MeSH groups with at least 15 studies were 
analysed. Topic modelling was done on inclusion and 
exclusion criteria of interventional trials in our dataset 
not listed as a phase 1–4 trial.

Development of an interactive dashboard for DTx 
clinical trial analysis
The dashboard for clinical trials data analysis was built 
with Streamlit. The dashboard implements all the 
methods described in this systematic review for analysis 
of study types, sponsor types, conditions, and eligibility 
criteria.

Statistics
Descriptive statistics are provided for categorical variables 
as proportions, and averages are reported for continuous 
variables as medians and IQRs. Spearman’s rank 
correlation coefficient (r) values were calculated to 
analyse the correlation between continuous variables. 
Mann-Whitney U tests were used to establish differences 
in median enrolment between MeSH categories and 
Bonferroni correction was used to account for multiple 
testing. Statistical testing was done with Scipy 
(version 1.7.3) and p values less than 0·05 were considered 
significant.25

Results
Using 27 search terms related to digital therapeutics 
(appendix p 1), we identified 8615 clinical trials involving 
digital-based interventions. Of these trials, 7386 were 
active or ongoing, and 7221 had a start date after 2010 and 
expected completion date before 2030. Since DTx are 
regulated by the FDA as “software as a medical device”, 
we only considered studies that were listed as using FDA-
regulated devices and conducted for non-basic science 
purposes, resulting in 449 studies of interest (figure 1). Of 
these 449 studies, 53 (11∙8%) were observational and 396 
(88∙2%) interventional (figure 2), with 74 interventional 
studies listing a completion date in 2022, and 88 in 2023. 
Overall, 150 interventional and 18 observational studies 
were listed as completed, with median study durations of 
1·02 years (IQR 0·57–1·69, range 0·06–5·17) and 0·69 
years (0·32–1·59, range 0·05–5·42), respectively 
(figure 2). 13 observational and 68 interventional studies 
were first posted to the registry in 2022 (appendix p 3). 
Because all information on ClinicalTrials.gov is 
voluntarily reported by the sponsor of each clinical trial, 

only available data are used for each analysis and 
missingness is reported in the appendix (p 2). 

ClinicalTrials.gov requires sponsors to list the facilities 
in which studies are being done, although how this is 

Figure 2: Overview of DTx clinical trials
(A) Number of trials completed or expected to complete between 2014 and 2030. The dashed line indicates the 
current year. (B) Duration of completed interventional and observational trials. DTx=digital therapeutics.
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(A) Number of facilities doing DTx clinical trials by state. Grey areas represent states with no clinical trials. 
(B) Distribution of sponsor and collaborator types. DTx=digital therapeutics. NIH=National Institutes of Health.
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interpreted for DTx studies is not clear. As one of the 
primary advantages of DTx is their ability to deliver care 
remotely, we wanted to understand the geographical 
distribution of listed physical clinical trial locations. 

Using location data provided by each study, we found 
that the states with the most DTx clinical trial locations 
were California (n=135), New York (n=58), Florida 
(n=55), Pennsylvania (n=52), and Texas (n=50; figure 3). 
Five states—South Dakota, Wyoming, Hawaii, Delaware, 
and West Virginia—had no listed locations. Overall, the 
mean number of locations for each completed trial was 
2·33 (SD 5·75). Four trials were completed without any 
listed facilities. The number of clinical trial locations 
was strongly correlated with state population (r=0·89, 
p<0·001; appendix p 4). We also analysed whether the 
reported clinical trial locations included socio
economically disadvantaged neighbourhoods, measured 
with the ADI. In the five states with the largest number 
of clinical trial locations, the number of clinical trials 
was inversely correlated with both the national (r=–0·52, 
p<0·001) and state (r=–0·66, p=0·037) ADI (appendix 
p 4).

To characterise the types of sponsors and collaborators 
funding or supporting clinical trials for DTx, we looked at 
the listed lead sponsor and collaborator classes for the 
449 trials. The most common sponsor type was other 
(n=290 [65%]), which generally referred to academic 
medical centres (figure 3). Industry was the next most 
common sponsor type, with 146 (33%) trials. Most 

studies were done by a single sponsor with no collab
orators (n=236, 53%), 131 (29%) had one collaborator, 
45 (10%) had two, and 37 (8%) had three or more. For 
studies with a single collaborator, 26 were sponsored by 
other or academic institutions and had an industry 
collaborator and 14 were sponsored by industry with 
another or academic collaborator.

To establish the distribution of DTx trials by medical 
specialty, we mapped conditions listed as free text by 
each clinical trial to MeSH terms using a SciSpacy 
pipeline and  MeSH EntityLinker. The three most 
common headings tested in DTx clinical trials were 
nervous system diseases (n=82 [19%]; figure 4), 
nutritional and metabolic diseases (n=45 [10%]), and 
pathological conditions, signs, and symptoms (n=41 
[9%]), followed by behaviour and behaviour mechanisms 
(n=37 [8%]), cardiovascular diseases (n=34 [8%]), and 
mental disorders (n=31 [7%]). Conditions that mapped to 
the heading of nervous system diseases included stroke 
and Parkinson’s disease, nutritional and metabolic 
diseases included both diabetes type 1 and 2, and 
respiratory tract diseases included conditions such as 
asthma and COPD. The MeSH category pathological 
conditions, signs, and symptoms contained “abnormal 
anatomical or physiological conditions…not classified as 
disease”, and included conditions such as chronic pain. 
Manual review of MeSH terms also showed that this 
approach mapped conditions to appropriate categories 
for 95% of conditions (appendix pp 5–6). Of the six 

Figure 4: Interventional DTx clinical trials by medical specialty
(A) Number of clinical trials mapped to each MeSH term by use of a SciSpacy EntityLinker.15 (B) Actual and anticipated enrolment by MeSH group. Diamonds represent 
outliers. DTx=digital therapeutics. *Significant (p<0·05)
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studies in which conditions did not map to MeSH terms 
and were excluded from analysis, four described 
treatments or device characteristics (eg, device latency) 
rather than medical conditions and two described generic 
symptoms that did not map to specific headings (nasal 
congestion and prenatal stress; appendix p 7). 

With conditions classified into standardised clusters, 
we compared enrolment counts within each MeSH 
heading, focusing on non-phase 1, interventional trials in 
groups with fewer than ten studies. Trials targeting 
cardiovascular diseases had the highest number of actual 
and anticipated participants, with a combined median of 
200 participants (IQR 100–350, range 40–450 000; 
24 trials), followed by trials for nutritional and metabolic 
diseases with a combined median of 100 participants 
(IQR 30–197, range 6–6006; 41 trials) and behaviour and 
behaviour mechanisms again with a combined median 
of 100 participants (IQR 40–234, range 7–4500; 35 trials; 
figure 4). The category with the fewest median number 
of participants was nervous system diseases, which had a 
median of 40 participants (IQR 22–100; 70 trials), 
although the largest trial in this category listed an 
anticipated enrolment of 100 000 participants. Comparing 
anticipated and actual enrolment information within 
each MeSH group, median anticipated enrolment was 
only significantly higher than actual enrolment for 
nutritional and metabolic disease DTx trials, with a 
median difference of 211 participants (p=0·035). 

Previous studies of drug therapeutic clinical trials have 
shown that eligibility criteria are often overly strict and 
can skew trial cohorts away from real-world patient popu
lations.10,11 The top five inclusion criteria topics identified 
by BERTopic from DTx studies were defined by terms 
related to clinical factors, ability to provide informed 
consent, age, smartphone and data access, and English 
fluency (figure 5). Criteria associated with clinical factors 
were most frequently found in 21 (55%) of 38 pathological 
condition trials, 31 (47%) of 66 trials for nervous system 
diseases, and 11 (46%) of 24 trials for mental health 
disorders. Age criteria were most likely to be found in 
trials for behavioural disorders (23 [72%] of 32) and 
nutritional and metabolic diseases (25 [66%] of 38). 
Inclusion criteria detailing smartphone access were also 
found in several trials, occurring most frequently in DTx 
intended for nutritional and metabolic diseases (18 [47%] 
of 38) and neoplasms (8 [47%] of 17), and least frequently 
in trials for nervous system diseases (11 [17%] of 66) and 
pathological conditions (2 [5%] of 38). The topic related to 
smartphones and data access also contained other 
keywords associated with device compatibility, cellular 
data plans, and Wi-Fi access. Manual review of DTx 
studies with eligibility criteria in this topic showed that 
patients could be excluded if they did not have a PayPal 
account (NCT04857515), were not willing to use a 
smartphone and personal data plan, (NCT04159480), or 
did not show technological literacy (NCT04136626). This 
topic was most frequently found in trials for nutritional 

and metabolic diseases (18 [47%] of 38). The ability to 
provide informed consent was also most frequently found 
in trials for nutritional and metabolic diseases (24 [63%] 
of 38) and English fluency criteria occurred most 
frequently in trials for behaviour and behaviour 
mechanisms (11 [34%] of 32).

The top topics generated from the exclusion criteria 
were associated with medical history (varying between 
trials), pregnancy, allergies or other skin conditions, 
blood pressure, and, as with the inclusion criteria, the 
ability to provide informed consent (figure 5). 23 (96%) 
of 24 DTx clinical trials targeting mental health 
disorders, 33 (87%) of 38 trials targeting nervous system 
diseases, and 20 (83%) of 24 trials targeting cardio
vascular disease had exclusion criteria associated with 
medical history. Component analysis showed that some 
trials specifically excluded patients with a history of 
smoking or suicidal behaviour, cardiac disorders, or use 
of insulin (appendix p 9). Analysis of the topic associated 
with pregnancy showed that nutritional and metabolic 
disease DTx trials were most likely to contain this 
exclusion criterion (21 [55%] of 38), but only five (21%) 
of 24 trials for mental health disorders and three (13%) 
of 24 trials for cardiovascular diseases listed such 
criteria. Manual review was done on a subset of 
inclusion and exclusion eligibility criteria to ensure that 
topics were highly coherent and accurately described 
each criterion. Topics were appropriate in 95% (n=200) 
of inclusion criteria and 94% (n=200) of exclusion 
criteria (appendix pp 10–11).

Figure 5: Topic analysis of DTx clinical trial eligibility 
BERTopic embedding clustering was used for topic modelling of inclusion (A) and exclusion (B) criteria of DTx trials 
within each MeSH term. DTx=digital therapeutics.
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Although ClinicalTrials.gov has filters and other data 
analysis tools that enable research into the structured 
data, there are few publicly available visual tools for the 
analysis of DTx clinical trials. We provide an interactive 
dashboard—available from Github—for the analysis of 
DTx clinical trials data by use of the methods described 
in this Review.

Discussion
Digital therapeutics are a unique method of delivery for 
treating disease and have the potential to provide new 
treatment options for patients at an unprecedented scale. 
Here, we used NLP pipelines to characterise 449 DTx 
clinical trials identified on ClinicalTrials.gov. With more 
than 150 of these trials having expected completion dates 
by 2023, DTx are becoming rapidly available for patient 
care, making it essential to characterise the quality of 
evidence being gathered for these novel therapeutics and 
to better understand their benefits for real-world patient 
populations. 

We showed that the majority of DTx trials are sponsored 
by academic institutions or industry with no collaborators 
and are primarily being developed for nervous system 
diseases and nutritional and metabolic diseases, which 
aligns with a previous review of DTx clinical trials.14 
However, the review relied on manual extraction of DTx 
and did not filter for FDA-regulated devices with the 
ClinicalTrial.gov data field. Although we were able to 
quantify the distribution of sponsor categories, this study  
did not investigate any funding sources for these 
sponsors or the cost of DTx trials. ClinicalTrials.gov does 
provide an optional field for sponsors to include 
information regarding grants and funding sources, but 
its completeness and accuracy is dependent on 
transparent reporting from sponsors, and future studies 
might be necessary to quantify funding and costs for 
these trials. 

Our results also indicated that DTx trials were often of 
short duration, with interventional studies lasting an 
average of only 1 year, which points to a need for 
additional studies to understand the long-term usage and 
efficacy of DTx. Although these trials are short, the 
largest DTx trials were able to enrol more than 
400 000 patients in only one or two locations, suggesting 
that either these trials can be effectively scaled, or that 
they have alternative patient recruitment strategies that 
ClinicalTrials.gov does not capture. However, we also 
showed that DTx clinical trial facilities tend to be in the 
most populated states. Few are done in socioeconomically 
disadvantaged neighbourhoods, but further research is 
necessary to understand the true geographical and 
demographic distributions of users. 

Analysis of DTx clinical trial eligibility criteria showed 
that these trials frequently exclude patients with 
comorbidities, who are pregnant, who are children, and 
who are not fluent in English. Eligibility criteria for drug 
therapeutics frequently cause clinical trial cohorts to 

deviate from real-world populations,10,11 and analogous 
research into DTx usage might be necessary to ensure 
trial results are applicable to general patient populations. 
We also identified criteria specific to digital determinants 
of health, which describe factors related to the 
accessibility or availability of technology that contribute 
to health outcomes and quality of life.26,27 Our geographical 
analysis of these studies also matched this finding, which 
suggested that fewer facilities in disadvantaged 
communities in the USA are being used to recruit 
participants. Future initiatives to assess the role of digital 
determinants of health, such as SOLVE Health Tech,28 are 
necessary to ensure that DTx are effective in promoting 
better outcomes for all patients. 

The insights here and in the online interactive 
dashboard provide a framework for future research into 
DTx clinical trials, although we recognise there are 
limitations to our study. Although we were stringent in 
limiting our analysis to only FDA-regulated DTx, we 
might have missed DTx regulated outside the USA or 
inadvertently removed or selected others with our 
search criteria. Some DTx cleared through the 510(K) 
pathway, which allows medical devices to be marketed if 
they are substantially equivalent to already cleared 
devices, might not have registered preapproval trials,6 
but might still require post-marketing trials that could 
be analysed in future studies. Additionally, we were not 
able to differentiate between safety and efficacy studies 
with the data fields provided by ClinicalTrials.gov. Our 
analysis is also inherently limited to sponsor-provided 
data, which are not always up to date or accurate and 
might be missing or unstandardised.22 These limitations 
are particularly true for observational studies, for which 
the investigators are not required to list if they are 
studying an FDA-regulated product or if they accept 
healthy volunteers,18 although requirements could 
change as regulatory pathways evolve for the use of real-
world evidence in clinical trials. Finally, we focused on 
the use of MeSH terminology in our pipelines due to 
the suggested use of such terminology on ClinicalTrials.
gov, but other clinical vocabularies might be more 
applicable to capture additional nuances in clinical trial 
metadata analyses. Although we took a conservative 
approach in mapping DTx clinical trials to broad MeSH 
terms, clinical trials might also involve different 
indications that could be better captured by allowing 
trials to be mapped to multiple MeSH categories. 

Despite the limitations, our application of NLP 
strategies to ClinicalTrials.gov provides a comprehensive 
overview of the DTx development landscape, and the 
modular dashboard developed here will serve as an 
openly available tool for future research into clinical trial 
design and the real-world applicability of DTx. 
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