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Characterisation of digital therapeutic clinical trials:
a systematic review with natural language processing

Brenda Y Miao, Madhumita Sushil, Ava Xu, Michelle Wang, Douglas Arneson, Ellen Berkley, Meera Subash, Rohit Vashisht, Vivek Rudrapatna,

Atul ) Butte

Digital therapeutics (DTx) are a somewhat novel class of US Food and Drug Administration-regulated software that
help patients prevent, manage, or treat disease. Here, we use natural language processing to characterise registered
DTx clinical trials and provide insights into the clinical development landscape for these novel therapeutics. We
identified 449 DTx clinical trials, initiated or expected to be initiated between 2010 and 2030, from ClinicalTrials.gov
using 27 search terms, and available data were analysed, including trial durations, locations, MeSH categories,
enrolment, and sponsor types. Topic modelling of eligibility criteria, done with BERTopic, showed that DTx trials
frequently exclude patients on the basis of age, comorbidities, pregnancy, language barriers, and digital determinants
of health, including smartphone or data plan access. Our comprehensive overview of the DTx development landscape
highlights challenges in designing inclusive DTx clinical trials and presents opportunities for clinicians and researchers
to address these challenges. Finally, we provide an interactive dashboard for readers to conduct their own analyses.

Introduction
Digital therapeutics (DTx) are a somewhat novel class of
US Food and Drug Administration (FDA)-regulated
software that help patients prevent, manage, or treat
disease. Beyond providing additional therapeutic
options for patients, the method of delivery of DTx also
enables the delivery of continuous and personalised
care at scale.”” Examples of approved DTx include the
Propeller platform, which uses smart devices and paired
consumer applications to improve medication
adherence and reduces hospital admissions in patients
with asthma and chronic obstructive pulmonary disease
(COPD),** and EndeavorRx, a video game that helps
improve attention function in children with attention-
deficit hyperactivity disorder.” Although DTx have the
potential to help bridge gaps in access to care, there are
concerns that these software will require access to
compatible devices or high digital literacy, and widen
disparities in health outcomes.'® There is also substantial
interest from health-care and regulatory institutions to
analyse the clinical development landscape and quality
of clinical evidence available for DTx.®/

ClinicalTrials.gov is the main website in the USA for
registering clinical trials, as required by the FDA
Amendments Act of 2007 Several studies have previously
used the ClinicalTrials.gov registry to characterise the
level of clinical evidence for drug therapeutics, including
analysis of clinical trial design and applicability of trial
results to real-world populations.”™ Analogous studies of
clinical trials involving digital interventions®™ have
focused on structured data fields, and only a few have
attempted to provide additional insights through manual
free-text analysis. However, manual analysis is time-
consuming, requires specialised expertise, and is difficult
to keep up to date as new DTx trials occur, and so
automated tools are necessary to provide real-time
insight into emerging trials.

In the past 5 years, developments in natural language
processing (NLP) have made automated information
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extraction readily available for biomedical text. Software
tools, such as SciSpacy, provide open-source access to
text analysis pipelines and NLP models, which are
pretrained on large biomedical datasets and can achieve
high accuracies on information extraction and other
language tasks.”" These pipelines can also map extracted
concepts to existing biomedical vocabularies, such as
MeSH categories, for standardisation and downstream
analysis. Several NLP methods have been applied to
analyse drug therapeutic clinical trials,™” but have not yet
been used to characterise the clinical development of
DTx.

Given the increasing availability of DTx and their
corresponding clinical trials, we did a systematic review
to describe the characteristics of trials on DTx. We took
advantage of modern NLP methods to better understand
the characteristics of DTx clinical trials and the quality of
evidence available for these novel therapeutics. Finally,
we provide an interactive dashboard for readers to do
their own analyses of DTx studies using structured and
unstructured data fields from ClinicalTrials.gov.

Methods

Search strategy and selection criteria

Digital therapeutics clinical trials were identified
through the ClinicalTrials.gov application programming
interface by use of a set of 27 search terms related to
DTx, including “digital therapeutic”, “digital therapy”,
“smartphone”, “mobile app”’, and “video game”
(appendix p 1). Searches were limited to the fields
for BriefSummary, BriefTitle, InterventionName,
InterventionDescription, Keyword, DetailedDescription,
EligibilityCriteria, or OfficialTitle, and only trials
registered for FDA-regulated devices and not listed as
having a “basic science purpose” were included. We
used the ClinicalTrials.gov field IsFDARegulatedDevice
to identify trials “studying a device product subject to
section 510(k), 515, or 520(m) of the Federal Food, Drug,

and Cosmetic Act”.® Thus, even if FDA clearance or
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pgeocode

8615 records identified from ClinicalTrials.gov
and screened for eligibility

8166 excluded
1229 inactive trials
209 terminated
191 withdrawn
29 suspended
800 unknown
132 with start date before 2010
33 with completion date after 2030
6763 not listed as US FDA-regulated device
9 with design primary purpose listed as
basic science

y

449 clinical trial records retrieved and
included in systematic review

Figure 1: Study selection

Identification of 449 DTx clinical trial datasets from a search of ClinicalTrials.gov
by use of 27 search terms and additional ClinicalTrials.gov data filters.
DTx=digital therapeutics. FDA=US Food and Drug Administration.

approval had not been granted for any of these trials,
there was a high degree of confidence that they were for
FDA-regulated products. Basic science studies were
identified with the DesignStudyPurpose field and were
removed to focus on trials of DTx with an established
mechanism of action. By use of the OverallStatus field,
trials that had been terminated, withdrawn, suspended,
or had an unknown status were also excluded to limit
analysis to active trials. The scope of the systematic
review was also limited to studies with start dates
occurring after 2010, or expected completion dates listed
after 2030. Following these filtering steps, the full record
from each remaining DTx trial was then extracted from
the complete ClinicalTrials.gov dataset, which was
downloaded on Aug 3, 2022. We report our findings in
line with PRISMA guidelines. Since this systematic
review does not assess health outcomes, no protocol is
registered on PROSPERO. The full list of data fields
available for each trial can be found on ClinicalTrials.gov
on the Protocol Registration Data Element Definitions

page.®

Analysis of clinical trial characteristics by use of
structured data fields

We compared the number and duration of interventional
and observational trials, with duration calculated as the
number of years between reported start and completion
dates. Clinical trials were also analysed on the basis of
sponsor and collaborator types, visualised with a Sankey
diagram. To understand the geographical distribution of
clinical trial facilities in the USA, each entry in the
LocationState field was mapped to a state code with
the pgeocode software package (version 0.3.0) and the
number of trials in each state was plotted as a choropleth
map. The density of clinical trial facilities in each state
was also calculated as a ratio of trial locations to the

population of each state, by use of the 2021 estimated US
Census Bureau values.”

We analysed correlation between the number of clinical
trial locations and the area deprivation index (ADI), a
metric of socioeconomic status in each region. ADIs for
the five states with the highest number of clinical trial
locations were downloaded from the University of
Madison Neighborhood Atlas and mapped to each listed
facility’s zip code.®* National and state ADIs were
analysed, with national ADI score given as a percentile
across the entire country. At the state level, ADI is
provided on a scale from 1 to 10. Higher scores represent
greater socioeconomic disadvantage for both state and
national ADIs. Only trials with available features in each
data field were considered for these analyses (appendix

p2).

Extraction of condition and eligibility criteria by use of
NLP

Although ClinicalTrials.gov has an internal algorithm to
map conditions listed with standardised biomedical
vocabulary to MeSH terms, these terms do not
correspond to the main MeSH branches and are not
available for all clinical trials.” To create standardised
mappings for each clinical trial, medical conditions from
the condition free-text field were extracted and mapped
to MeSH terms by use of the MeSH EntityLinker from
SciSpacy (version 0.5.0),° with only the first match
selected for each condition. Resulting terms were
grouped into MeSH categories and the most frequent
heading was selected for trials with multiple conditions,
with priority given to values under the branches C
(diseases) and F (psychiatry and psychology). MeSH
terms were manually reviewed to assess the validity of
the MeSH EntityLinker on this dataset. With conditions
classified into standardised clusters, we compared
enrolment counts in each MeSH heading, focusing on
non-phase 1, interventional trials in groups with fewer
than ten studies. The EnrolmentType field was used to
differentiate between actual and anticipated enrolment
for each trial.

To analyse the most common types of eligibility criteria,
we used the BERTopic topic modelling technique
(version 0.11.0),” which clusters text embeddings to
produce interpretable, semantically cohesive clusters.
BERTopic has been used in previous studies of
biomedical text and has been shown to generate more
coherent topics compared with Latent Derelict Aldrich or
other topic modelling methods.* To generate embeddings
for BERTopic, text from the eligibility criteria field was
first split into inclusion and exclusion criteria, with each
line considered a separate document. A language model
from SciSpacy pretrained on biomedical text (en_core_
sci_lg) was then used to generate embeddings for each
eligibility criterion. The SciSpacy embeddings encode
semantic relationships between biomedical terms,
allowing related terms to be grouped into more
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semantically cohesive topics, unlike conventional
methods that cluster words only on the basis of their
frequency and co-occurence.® A BERTopic model with
default settings was used to generate topics from these
embeddings, and the top five topics for each eligibility
criterion were mapped back to the corresponding clinical
trial to analyse the percentage of each topic occurring in
each MeSH cluster. Again, a subset of the 200 inclusion
and exclusion criteria were manually reviewed to confirm
that the eligibility criteria were mapped correctly to these
topics. Only MeSH groups with at least 15 studies were
analysed. Topic modelling was done on inclusion and
exclusion criteria of interventional trials in our dataset
not listed as a phase 14 trial.

Development of an interactive dashboard for DTx
clinical trial analysis

The dashboard for clinical trials data analysis was built
with Streamlit. The dashboard implements all the
methods described in this systematic review for analysis
of study types, sponsor types, conditions, and eligibility
criteria.

Statistics

Descriptive statistics are provided for categorical variables
as proportions, and averages are reported for continuous
variables as medians and IQRs. Spearman’s rank
correlation coefficient (r) values were calculated to
analyse the correlation between continuous variables.
Mann-Whitney U tests were used to establish differences
in median enrolment between MeSH categories and
Bonferroni correction was used to account for multiple
testing. Statistical testing was done with Scipy
(version 1.7.3) and p values less than 0- 05 were considered
significant.”

Results

Using 27 search terms related to digital therapeutics
(appendix p 1), we identified 8615 clinical trials involving
digital-based interventions. Of these trials, 7386 were
active or ongoing, and 7221 had a start date after 2010 and
expected completion date before 2030. Since DTx are
regulated by the FDA as “software as a medical device”,
we only considered studies that were listed as using FDA-
regulated devices and conducted for non-basic science
purposes, resulting in 449 studies of interest (figure 1). Of
these 449 studies, 53 (11-8%) were observational and 396
(88-2%) interventional (figure 2), with 74 interventional
studies listing a completion date in 2022, and 88 in 2023.
Overall, 150 interventional and 18 observational studies
were listed as completed, with median study durations of
102 years (IQR 0-57-1-69, range 0-06-5-17) and 0-69
years (0-32-1-59, range 0-05-5-42), respectively
(figure 2). 13 observational and 68 interventional studies
were first posted to the registry in 2022 (appendix p 3).
Because all information on ClinicalTrials.gov is
voluntarily reported by the sponsor of each clinical trial,
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only available data are used for each analysis and
missingness is reported in the appendix (p 2).
ClinicalTrials.gov requires sponsors to list the facilities

For Streamlit see https://

in which studies are being done, although how this is streamlitio/
A B
100-] Studytype — 5 ¢ '
[ Interventional
TE 04 & Observational 2 o .
= 5] ‘
S >
%’ 60 | | g 34
5 _ &
3 40 — 3 27
€ =
2 20+ - F o1
0 Ibgl Ibl l% S o b&l Ibl l%l IQI O_Ob N J_ |
& N N 4 Q) < 0 » servational Interventiona
G R I S G
Completion year

Figure 2: Overview of DTx clinical trials

(A) Number of trials completed or expected to complete between 2014 and 2030. The dashed line indicates the
current year. (B) Duration of completed interventional and observational trials. DTx=digital therapeutics.
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Figure 3: Characteristics of US-based DTx clinical trial locations and sponsors

(A) Number of facilities doing DTx clinical trials by state. Grey areas represent states with no clinical trials.
(B) Distribution of sponsor and collaborator types. DTx=digital therapeutics. NIH=National Institutes of Health.
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Figure 4: Interventional DTx clinical trials by medical specialty

(A) Number of clinical trials mapped to each MeSH term by use of a SciSpacy EntityLinker.” (B) Actual and anticipated enrolment by MeSH group. Diamonds represent

outliers. DTx=digital therapeutics. *Significant (p<0-05)

interpreted for DTx studies is not clear. As one of the
primary advantages of DTx is their ability to deliver care
remotely, we wanted to understand the geographical
distribution of listed physical clinical trial locations.

Using location data provided by each study, we found
that the states with the most DTx clinical trial locations
were California (n=135), New York (n=58), Florida
(n=55), Pennsylvania (n=52), and Texas (n=50; figure 3).
Five states—South Dakota, Wyoming, Hawaii, Delaware,
and West Virginia—had no listed locations. Overall, the
mean number of locations for each completed trial was
2-33 (SD 5-75). Four trials were completed without any
listed facilities. The number of clinical trial locations
was strongly correlated with state population (r=0-89,
p<0-001; appendix p 4). We also analysed whether the
reported clinical trial locations included socio-
economically disadvantaged neighbourhoods, measured
with the ADI. In the five states with the largest number
of clinical trial locations, the number of clinical trials
was inversely correlated with both the national (r=—0-52,
p<0-001) and state (r=—0-66, p=0-037) ADI (appendix
p4).

To characterise the types of sponsors and collaborators
funding or supporting clinical trials for DTx, we looked at
the listed lead sponsor and collaborator classes for the
449 trials. The most common sponsor type was other
(n=290 [65%]), which generally referred to academic
medical centres (figure 3). Industry was the next most
common sponsor type, with 146 (33%) trials. Most

studies were done by a single sponsor with no collab-
orators (n=236, 53%), 131 (29%) had one collaborator,
45 (10%) had two, and 37 (8%) had three or more. For
studies with a single collaborator, 26 were sponsored by
other or academic institutions and had an industry
collaborator and 14 were sponsored by industry with
another or academic collaborator.

To establish the distribution of DTx trials by medical
specialty, we mapped conditions listed as free text by
each clinical trial to MeSH terms using a SciSpacy
pipeline and MeSH EntityLinker. The three most
common headings tested in DTx clinical trials were
nervous system diseases (n=82 [19%]; figure 4),
nutritional and metabolic diseases (n=45 [10%]), and
pathological conditions, signs, and symptoms (n=41
[9%)]), followed by behaviour and behaviour mechanisms
(n=37 [8%]), cardiovascular diseases (n=34 [8%]), and
mental disorders (n=31 [7%]). Conditions that mapped to
the heading of nervous system diseases included stroke
and Parkinson’s disease, nutritional and metabolic
diseases included both diabetes type 1 and 2, and
respiratory tract diseases included conditions such as
asthma and COPD. The MeSH category pathological
conditions, signs, and symptoms contained “abnormal
anatomical or physiological conditions...not classified as
disease”, and included conditions such as chronic pain.
Manual review of MeSH terms also showed that this
approach mapped conditions to appropriate categories
for 95% of conditions (appendix pp 5-6). Of the six
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studies in which conditions did not map to MeSH terms
and were excluded from analysis, four described
treatments or device characteristics (eg, device latency)
rather than medical conditions and two described generic
symptoms that did not map to specific headings (nasal
congestion and prenatal stress; appendix p 7).

With conditions classified into standardised clusters,
we compared enrolment counts within each MeSH
heading, focusing on non-phase 1, interventional trials in
groups with fewer than ten studies. Trials targeting
cardiovascular diseases had the highest number of actual
and anticipated participants, with a combined median of
200 participants (IQR 100-350, range 40-450000;
24 trials), followed by trials for nutritional and metabolic
diseases with a combined median of 100 participants
(IQR 30-197, range 6-6006; 41 trials) and behaviour and
behaviour mechanisms again with a combined median
of 100 participants (IQR 40-234, range 7-4500; 35 trials;
figure 4). The category with the fewest median number
of participants was nervous system diseases, which had a
median of 40 participants (IQR 22-100; 70 trials),
although the largest trial in this category listed an
anticipated enrolment of 100 000 participants. Comparing
anticipated and actual enrolment information within
each MeSH group, median anticipated enrolment was
only significantly higher than actual enrolment for
nutritional and metabolic disease DTx trials, with a
median difference of 211 participants (p=0-035).

Previous studies of drug therapeutic clinical trials have
shown that eligibility criteria are often overly strict and
can skew trial cohorts away from real-world patient popu-
lations." The top five inclusion criteria topics identified
by BERTopic from DTx studies were defined by terms
related to clinical factors, ability to provide informed
consent, age, smartphone and data access, and English
fluency (figure 5). Criteria associated with clinical factors
were most frequently found in 21 (55%) of 38 pathological
condition trials, 31 (47%) of 66 trials for nervous system
diseases, and 11 (46%) of 24 trials for mental health
disorders. Age criteria were most likely to be found in
trials for behavioural disorders (23 [72%] of 32) and
nutritional and metabolic diseases (25 [66%)] of 38).
Inclusion criteria detailing smartphone access were also
found in several trials, occurring most frequently in DTx
intended for nutritional and metabolic diseases (18 [47%]
of 38) and neoplasms (8 [47%] of 17), and least frequently
in trials for nervous system diseases (11 [17%)] of 66) and
pathological conditions (2 [5%] of 38). The topic related to
smartphones and data access also contained other
keywords associated with device compatibility, cellular
data plans, and Wi-Fi access. Manual review of DTx
studies with eligibility criteria in this topic showed that
patients could be excluded if they did not have a PayPal
account (NCT04857515), were not willing to use a
smartphone and personal data plan, (NCT04159480), or
did not show technological literacy (NCT04136626). This
topic was most frequently found in trials for nutritional
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Figure 5: Topic analysis of DTx clinical trial eligibility

BERTopic embedding clustering was used for topic modelling of inclusion (A) and exclusion (B) criteria of DTx trials

within each MeSH term. DTx=digital therapeutics.

and metabolic diseases (18 [47%] of 38). The ability to
provide informed consent was also most frequently found
in trials for nutritional and metabolic diseases (24 [63%]
of 38) and English fluency criteria occurred most
frequently in trials for behaviour and behaviour
mechanisms (11 [34%] of 32).

The top topics generated from the exclusion criteria
were associated with medical history (varying between
trials), pregnancy, allergies or other skin conditions,
blood pressure, and, as with the inclusion criteria, the
ability to provide informed consent (figure 5). 23 (96%)
of 24 DTx clinical trials targeting mental health
disorders, 33 (87%) of 38 trials targeting nervous system
diseases, and 20 (83%) of 24 trials targeting cardio-
vascular disease had exclusion criteria associated with
medical history. Component analysis showed that some
trials specifically excluded patients with a history of
smoking or suicidal behaviour, cardiac disorders, or use
of insulin (appendix p 9). Analysis of the topic associated
with pregnancy showed that nutritional and metabolic
disease DTx trials were most likely to contain this
exclusion criterion (21 [55%] of 38), but only five (21%)
of 24 trials for mental health disorders and three (13%)
of 24 trials for cardiovascular diseases listed such
criteria. Manual review was done on a subset of
inclusion and exclusion eligibility criteria to ensure that
topics were highly coherent and accurately described
each criterion. Topics were appropriate in 95% (n=200)
of inclusion criteria and 94% (n=200) of exclusion
criteria (appendix pp 10-11).
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Although ClinicalTrials.gov has filters and other data
analysis tools that enable research into the structured
data, there are few publicly available visual tools for the
analysis of DTx clinical trials. We provide an interactive
dashboard—available from Github—for the analysis of
DTx clinical trials data by use of the methods described
in this Review.

Discussion

Digital therapeutics are a unique method of delivery for
treating disease and have the potential to provide new
treatment options for patients at an unprecedented scale.
Here, we used NLP pipelines to characterise 449 DTx
clinical trials identified on ClinicalTrials.gov. With more
than 150 of these trials having expected completion dates
by 2023, DTx are becoming rapidly available for patient
care, making it essential to characterise the quality of
evidence being gathered for these novel therapeutics and
to better understand their benefits for real-world patient
populations.

We showed that the majority of DTx trials are sponsored
by academic institutions or industry with no collaborators
and are primarily being developed for nervous system
diseases and nutritional and metabolic diseases, which
aligns with a previous review of DTx clinical trials.*
However, the review relied on manual extraction of DTx
and did not filter for FDA-regulated devices with the
ClinicalTrial.gov data field. Although we were able to
quantify the distribution of sponsor categories, this study
did not investigate any funding sources for these
sponsors or the cost of DTx trials. ClinicalTrials.gov does
provide an optional field for sponsors to include
information regarding grants and funding sources, but
its completeness and accuracy is dependent on
transparent reporting from sponsors, and future studies
might be necessary to quantify funding and costs for
these trials.

Our results also indicated that DTx trials were often of
short duration, with interventional studies lasting an
average of only 1 year, which points to a need for
additional studies to understand the long-term usage and
efficacy of DTx. Although these trials are short, the
largest DTx trials were able to enrol more than
400000 patients in only one or two locations, suggesting
that either these trials can be effectively scaled, or that
they have alternative patient recruitment strategies that
ClinicalTrials.gov does not capture. However, we also
showed that DTx clinical trial facilities tend to be in the
most populated states. Few are done in socioeconomically
disadvantaged neighbourhoods, but further research is
necessary to understand the true geographical and
demographic distributions of users.

Analysis of DTx clinical trial eligibility criteria showed
that these trials frequently exclude patients with
comorbidities, who are pregnant, who are children, and
who are not fluent in English. Eligibility criteria for drug
therapeutics frequently cause clinical trial cohorts to

deviate from real-world populations,®” and analogous
research into DTx usage might be necessary to ensure
trial results are applicable to general patient populations.
We also identified criteria specific to digital determinants
of health, which describe factors related to the
accessibility or availability of technology that contribute
to health outcomes and quality of life.*” Our geographical
analysis of these studies also matched this finding, which
suggested that fewer facilities in disadvantaged
communities in the USA are being used to recruit
participants. Future initiatives to assess the role of digital
determinants of health, such as SOLVE Health Tech,” are
necessary to ensure that DTx are effective in promoting
better outcomes for all patients.

The insights here and in the online interactive
dashboard provide a framework for future research into
DTx clinical trials, although we recognise there are
limitations to our study. Although we were stringent in
limiting our analysis to only FDA-regulated DTx, we
might have missed DTx regulated outside the USA or
inadvertently removed or selected others with our
search criteria. Some DTx cleared through the 510(K)
pathway, which allows medical devices to be marketed if
they are substantially equivalent to already cleared
devices, might not have registered preapproval trials,
but might still require post-marketing trials that could
be analysed in future studies. Additionally, we were not
able to differentiate between safety and efficacy studies
with the data fields provided by ClinicalTrials.gov. Our
analysis is also inherently limited to sponsor-provided
data, which are not always up to date or accurate and
might be missing or unstandardised.” These limitations
are particularly true for observational studies, for which
the investigators are not required to list if they are
studying an FDA-regulated product or if they accept
healthy volunteers,”® although requirements could
change as regulatory pathways evolve for the use of real-
world evidence in clinical trials. Finally, we focused on
the use of MeSH terminology in our pipelines due to
the suggested use of such terminology on ClinicalTrials.
gov, but other clinical vocabularies might be more
applicable to capture additional nuances in clinical trial
metadata analyses. Although we took a conservative
approach in mapping DTx clinical trials to broad MeSH
terms, clinical trials might also involve different
indications that could be better captured by allowing
trials to be mapped to multiple MeSH categories.

Despite the limitations, our application of NLP
strategies to ClinicalTrials.gov provides a comprehensive
overview of the DTx development landscape, and the
modular dashboard developed here will serve as an
openly available tool for future research into clinical trial
design and the real-world applicability of DTx.
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