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Abstract

Large language models (LLMs) show impressive capabilities, matching and some-
times exceeding human performance in many domains. This study explores the
potential of LLMs to augment judgement in forecasting tasks. We evaluated the
impact on forecasting accuracy of two GPT-4-Turbo assistants: one designed to
provide high-quality advice (‘superforecasting’), and the other designed to be
overconfident and base-rate-neglecting. Participants (N = 991) had the option to
consult their assigned LLM assistant throughout the study, in contrast to a control
group that used a less advanced model (DaVinci-003) without direct forecasting
support. Our preregistered analyses reveal that LLM augmentation significantly
enhances forecasting accuracy by 23% across both types of assistants, compared to
the control group. This improvement occurs despite the superforecasting assistant’s
higher accuracy in predictions, indicating the augmentation’s benefit is not solely
due to model prediction accuracy. Exploratory analyses showed a pronounced
effect in one forecasting item, without which we find that the superforecasting
assistant increased accuracy by 43%, compared with 28% for the biased assis-
tant. We further examine whether LLM augmentation disproportionately benefits
less skilled forecasters, degrades the wisdom-of-the-crowd by reducing prediction
diversity, or varies in effectiveness with question difficulty. Our findings do not
consistently support these hypotheses. Our results suggest that access to an LLM
assistant, even a biased one, can be a helpful decision aid in cognitively demanding
tasks where the answer is not known at the time of interaction.

*Any views expressed in this paper do not necessarily reflect those of the Federal Reserve Bank of Chicago or
the Federal Reserve System.
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1 Introduction

Recent advances in artificial intelligence (AI), and large language models (LLMs) specifically, demonstrate that
AI systems have impressive abilities across a large number of complex and economically valuable tasks (Naveed
et al. 2023). This development challenges previously held beliefs about the necessity of human cognition for
many of these tasks (Bubeck et al. 2023), and raises the possibility of significant negative effects of AI systems
on the (human) labor market in large parts of the knowledge economy (George and Baskar 2023). Understanding
the current ability of LLMs to interface with economically central tasks requires a broad empirical study across
domains. However, most knowledge-work jobs require substantial reasoning capabilities that use data and
patterns of observations beyond any model’s training data. This makes finding a suitable study context central in
any attempt to understand how LLMs might impact advanced economies.

LLMs are comprised of a vast array of parameters, built using the Transformer architectural paradigm (Vaswani
et al. 2017) and trained on a large amount of data (Shen et al. 2023). These advanced AI systems excel at
next-token prediction: the ability to predict the next word or subword (token). But this general training objective
of next-token prediction also equips these models with a variety of specialized advanced skills, often in an
emergent way that cannot have been fully predicted before training due to nonlinearities in capabilities (Wei
et al. 2022). These skills include marketing (Fraiwan and Khasawneh 2023), translation (Jiao et al. 2023),
high levels of reading comprehension (Winter 2023), teaching (Fraiwan and Khasawneh 2023; Sallam et al.
2023), summarization (T. Goyal, J. J. Li, and Durrett 2023), abstract categorization of objects (Atari et al. 2023),
programming (Bubeck et al. 2023), spear phishing cyber attacks (Hazell 2023; Heiding et al. 2023), robotics
(Vemprala et al. 2023), medical reasoning (Bubeck et al. 2023; Nori et al. 2023; Sallam et al. 2023), legal
reasoning (Bubeck et al. 2023; Katz et al. 2023), deception (Park, Goldstein, et al. 2023), and others. LLMs’
many capabilities substantially increase the amount of money and talent going into LLM research and products
(Sutton 2023), suggesting further growth in capabilities in the near future.

Crucially, LLMs are not naturally autonomous for many of the relevant tasks (Xi et al. 2023), although they
can be made generally autonomous with an agent framework such as AutoGPT (Firat and Kuleli 2023) or other
scaffolding approaches. Moreover, future iterations of models may enable such behavior directly (Kinniment
et al. 2023), making agency, the ability to take actions and achieve goals independently more widely accessible.
At the time of writing, however, LLMs are not economically useful as autonomous agents due to prominent
limitations like inefficiency, forgetting, and hallucinations (Firat and Kuleli 2023). Instead, they are generally
used in conjunction with human labor as a hybrid technology that requires human input at several stages
(Dell’Acqua et al. 2023). This hybrid use of LLMs enables humans to combine their strengths with those of
the models to produce output that is, at least in some aspects, more efficient than the output produced by either
humans or machines alone. For example, LLM augmentations have been shown to improve performance of
human graders (Xiao et al. 2024) as well as that of programmers (Peng et al. 2023).

In this paper, we study the application of present-era LLMs as a hybrid augmentation technology in the context
of forecasting future events. This allows us to test their ability to augment human decision-making in a domain
robust to in-sample overfitting of training data, since no one, including LLMs, can know the answer to prospective
forecasting questions at the time of data collection. This context is also practically relevant as accurate forecasting
is essential to many aspects of economic activity, especially within white-collar occupational domains such as
law, business, and policy: fields that may be disrupted or even replaced by LLM capabilities (Acemoğlu 2023;
Park and Tegmark 2023; Summers and Rattner 2023). If the use of present or future AI systems increases the
forecasting accuracy of humans and organizations, the efficiency and productivity gains to the relevant industries’
individuals and businesses are clear.

Our specific object of interest in this study is human judgment forecasting, where humans provide forecasts
of future events, such as the probability that inflation will hit a certain milestone over the next twelve months
or the anticipated number of barrels in the Strategic Petroleum Reserve at the end of the year. The science of
forecasting has found that aggregated forecasts of a crowd of forecasters can be surprisingly accurate (P. E.
Tetlock and Gardner 2016), can impact policy debates (P. E. Tetlock, B. A. Mellers, and Scoblic 2017), and
can affect businesses (Schoemaker and P. E. Tetlock 2016). Previous work on the topic focuses on a variety
of other topics, ranging from the identification of skilled forecasters (Himmelstein, Budescu, and Han 2023;
B. Mellers et al. 2015; P. E. Tetlock and Gardner 2016) and novel aggregation methods (P. Atanasov et al. 2017)
to improvements of forecasting accuracy (Chang et al. 2016; Karger, P. D. Atanasov, and P. Tetlock 2022).

Similar to our project, some previous work focuses on human-machine hybrid forecasting in the context of
IARPA’s ‘Hybrid Forecasting Competition.’ Benjamin et al. (2023) report the results of ‘SAGE,’ a hybrid
forecasting system designed to combine human- and machine-generated forecasts (such as ARIMA forecast
outputs). They find that their hybrid forecasting system outperformed their human-only baseline, suggesting
that cost savings and accuracy increases of these hybrid systems may be “a viable approach for maintaining a
competitive level of accuracy” (Benjamin et al. 2023, p. 113). Similarly, P. Atanasov et al. (2017) introduce a
‘Human Forest’ method that enables human forecasters to define custom reference classes, draw on historical
databases, and review base rates in their forecasting. They find that these forecasters outperform statistical model
predictions. However, both approaches used pre-LLM methods as their machine counterparts, which makes
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them more static and predictable than frontier LLMs and their potential hybrid functions that go beyond previous
machine capabilities.

In this paper, we update this literature in light of recent breakthroughs in frontier LLMs, enabling a free exchange
between the human and the model in a way that previous technology did not. Those interacting with the model
could query it to fill their own gaps in knowledge or perceived weaknesses. They could ask it to produce a
forecast for them, they could input their own reasoning and predictions into the model for feedback, or they
could do a combination of these and other approaches they might find helpful. Our goal is to probe whether
LLM-augmentation can be a cheap, scalable, and effective method of improving human judgement forecasting.
Inference costs for LLMs remain low, at a few cents per 1000 tokens, making LLM augmentation a prime
candidate for a generalized hybrid system that can boost individual proficiency in many valuable tasks at costs
far below a human assistant equivalent, if such an equivalent existed.

While traditional measures of AI proficiency often rely on task benchmarks, we argue that evaluating forecast
accuracy in real-world scenarios presents a more comprehensive assessment of reasoning capabilities. This
method also increases the likelihood of these results generalizing to different and even out-of-distribution settings
(Arora and A. Goyal 2023). Our approach diverges from conventional task benchmarks, as it focuses on the
LLM’s ability to apply its knowledge and understanding to novel settings, rather than settings represented in some
shape or form in its training data. Even if an LLM excels at a given task benchmark, it is unclear whether this
reveals a deep understanding of the process behind the task, instead of rote memorization of the task benchmark’s
answers in the training data (Bender et al. 2021; Biderman et al. 2023; Carlini et al. 2023; Magar and Schwartz
2022). The difficulty in disentangling true understanding from training data memorization is non-trivial. Deep
understanding, after all, also originates from exposure to relevant content within the training dataset. However,
the success or failure to generalize outside of the training data appears central to this disentangling (Grove and
Bretz 2012). In our study, we analyze human forecasting behavior on a set of prediction questions that resolve in
the future such that it is impossible for any human forecaster or AI-based system to access the answer at the time
of data collection.

Past work found that the frontier model GPT-4 significantly underperformed the median human-crowd forecast
in a real-world forecasting tournament, failing to even significantly outperform the no-information forecasting
strategy of uniform random guessing (Schoenegger and Park 2023). However, this previous study investigated
the static machine forecasts produced solely by the LLM, without incorporating human input. It is reasonable to
expect that human-LLM hybrid forecasts—the object of study in the present paper—would outperform the poor
results of the LLM operating by itself. While hybrid forecasting approaches have been previously studied—for
example, in making predictions on geopolitical questions (Benjamin et al. 2023) and in radiology (Agarwal
et al. 2023)—our approach is arguably more meaningfully hybrid, in that a human forecaster can engage in
a back-and-forth dialogue with an LLM to fill gaps in knowledge, understanding, and data that differ on a
person-by-person level. This back-and-forth LLM augmentation may allow forecasters to use the model for the
parts of forecasting that they themselves struggle most with: be it synthesizing data, making coherent forecasts,
or attaching numbers to intuitions. This motivates our first research question and accompanying hypothesis,
testing whether we find an aggregate accuracy improvement of LLM augmentation. We test two treatments, one
where the human has access to an LLM with a ‘superforecasting’ (P. E. Tetlock and Gardner 2016) prompt and
the other using a biased LLM prompt to exhibit base rate neglect and overconfidence. Both models are instructed
to assist forecasters in whatever way is requested, ranging from providing point estimates to offering feedback
on forecasts. We predicted that the superforecasting LLM augmentation would outperform the biased LLM
augmentation, and that both hybrid treatment arms would have higher aggregate accuracy than the control.

Null Hypothesis 1: There is no difference in forecasting accuracy between the superfore-
casting (biased) LLM augmentation and the control.

Recent work has also shown that less skilled individuals benefit the most from LLM augmentation. For example,
LLM augmentation boosted the performance of low-performing professionals more than that of high-performing
professionals in studies where it was provided to management consultants (Dell’Acqua et al. 2023), customer-
support agents (Brynjolfsson, D. Li, and Raymond 2023), creative writers (Doshi and Hauser 2023), office
workers who write memos (Noy and W. Zhang 2023), law school students who write exams (Choi and Schwarcz
2024), and programmers (Peng et al. 2023). However, other work in the context of medicine found that human-AI
hybrid decisions are not associated with increased diagnostic quality, suggesting that the effects of AI may show
substantial heterogeneity across subject domains and implementation details (Agarwal et al. 2023). This suggests
that any effects of LLM-augmentation on forecasting are likely to be heterogeneous across the skill distribution,
with lower-skill forecasters relying to a greater degree on LLM augmentation which may help alleviate biases in
their predictions. This motivates our second hypothesis, which directly tests whether the LLM augmentation has
disparate impacts on forecasters of different skill levels. In line with previous literature, we predicted a greater
effect on lower skill forecasters.

Null Hypothesis 2: The effect of the superforecasting (biased) LLM augmentation on
forecasting accuracy does not differ between high- and low-skilled forecasters.
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In addition to investigating the effects of LLM augmentation on individual forecasts and on forecasters of
different levels of skill, we also investigate its potentially adverse effects on aggregate forecasts. Due to the
’wisdom of the crowd’ effect, aggregation—such as taking the median forecast—tends to result in an overall
forecast that is more accurate than the forecasts given by most individuals, even across heterogeneous types
of forecasters who may have different skill levels (Budescu and E. Chen 2015; Mannes, Soll, and Larrick
2014). However, this aggregation tends to be most effective when there is a diversity of forecasts. If the LLM
augmentation anchors human forecasters on the same forecast for a given question, it could reduce the value
of aggregation. We test whether LLM augmentation homogenizes forecasts: motivating our third hypothesis,
where we predicted a reduction in accuracy.

Null Hypothesis 3: There is no difference in aggregate level forecasting accuracy between
the superforecasting (biased) LLM augmentation and the control.

Finally, we compare the effect LLM augmentation has on forecasting questions of different difficulty levels.
There are a number of reasons why the difficulty of the forecasting question may be an important factor.
To illustrate, consider the plausibility of the following mechanism. Without Bayesian-rational calibration,
human forecasts tend to only partially take into account the difficulty of a given forecasting question in their
estimate (Lichtenstein and Fischhoff 1977; Moore and Healy 2008; Park 2022). In addition, there is a ‘correct
answer’ effect in LLM output (Abdurahman et al. 2023; Park, Schoenegger, and Zhu 2024; Solaiyappan
et al. 2023), where an LLM can answer even non-straightforward questions with near-zero or zero variance:
with a predetermined answer. If this ‘correct answer’ effect were to also affect LLM augmentation, then a
plausible interplay is that while human forecasters successfully answer easy forecasting questions, they do not
sufficiently take into account the difficulty of hard forecasting questions and instead are led astray by the LLM’s
overconfidently predetermined ‘correct answers.’ This would increase the degree of groupthink and thereby
reduce the benefit of LLM augmentation on forecasting accuracy, potentially even to the degree of decreasing
forecast accuracy. This motivates our last hypothesis, where we did not have a specific prediction.

Null Hypothesis 4: There is no difference in the effect of the superforecasting (biased)
LLM augmentation on forecasting accuracy between hard and easy questions.

2 Methods

All analyses were preregistered on the Open Science Framework1. We clearly label all exploratory/non-
preregistered analyses as such throughout the paper to indicate which analyses we decided to investigate after
having seen the data. This study has received ethics approval prior to data collection.2

For our study, we recruited a total of 1152 participants from Prolific, an online research platform gives researchers
access to people willing to participate in research. Participants were paid $5 for participation and could earn an
additional $100 based on their accuracy (we paid three such prizes to randomly selected participants who scored
in the top-10 of forecasters). We preregistered the following a priori power analysis: Using Cohen’s d=0.20 as
our smallest effect size of interest as a conventionally small effect, with an allocation ratio of 1.5/1/1 between the
main treatment, the secondary bias treatment, and the control, aiming for 80% power, we needed to recruit 492
participants for the Main treatment and 328 for the other two conditions, resulting in a final participant count of
1148. We recruited a total of 1152 participants, meeting our goal.

Our central dependent variable throughout this study was aggregate forecasting accuracy on a set of six
continuous forecasting questions that ranged from financial questions to geopolitical ones. For a full list, see
Table 1. Data collection happened on November 21, 2023, over five weeks prior to forecast question resolution.
We computed participant’s accuracy by comparing their forecasts to the true value of the forecasted question.
We computed the initial accuracy calculation for each forecasting question i as the absolute difference Di

between the participant’s forecast Fi and the actual value Ai, expressed as Di = |Fi −Ai|. As preregistered,
we conducted a 5% winsorisation process. Then, we standardized the values by dividing them by the standard
deviation of the control group for the respective question to normalise the values, allowing for inter-question
comparability in accuracy scores. Lastly, we conducted a second preregistered winsorisation step, this time at
the level of 3 standard deviations. For this accuracy measure, lower scores correspond to higher accuracy.

Our secondary variables, question difficulty, and forecaster skill, were determined as follows. A selected 10% of
the control group participants were tasked not only with providing forecasts for each question but also with rating
the perceived difficulty of each question on a 5-point Likert scale ranging from ‘Very easy’ to ‘Very difficult’.
Questions 2 and 3, receiving the highest difficulty ratings and we therefore identified those questions as being
the most challenging. In addition, prior to the main forecasting tasks, participants were asked a series of smaller,
lower-effort forecasting questions. These questions included binary predictions and intersubjective forecasts,

1https://osf.io/d9rhx/?view_only=c631c477026a41f3bd4e6b7a4e546157
2University of Pennsylvania Institutional Review Board IRB Protocol number: 854515
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Table 1: Main Study Questions
Main Forecasting Questions
Question 1: What will be the closing value for the
Dow Jones Transportation Average on December
29, 2023?

Question 2: How many refugees and migrants will
arrive in Europe by sea in the Mediterranean be-
tween December 1, 2023 and December 31, 2023?

Question 3: What will Bitcoin’s network hash rate
per second be (in TH/s) according to the perfor-
mance rates posted by blockchain.com on Decem-
ber 31, 2023?

Question 4: How many commercial flights will be
in operation globally on December 31, 2023?

Question 5: How many AI papers will be pub-
lished on ArXiv during the month between Decem-
ber 1, 2023 and December 31, 2023?

Question 6: What will be the closing value for the
U.S. Dollar against the Russian Ruble (converting
1 USD to RUB) on December 30, 2023?

to evaluate their ex-ante forecasting skill. Forecaster skill was quantified in two ways: firstly, through Brier
scores for binary predictions, defined as Brier Score = 1

N

∑N
n=1(fn − on)

2, where fn represents the forecast
probability, on the actual outcome, and N the total number of binary forecasts. Secondly, intersubjective forecast

accuracy was measured using the Euclidean distance formula Euclidean Distance =
√∑k

i=1(pi − qi)2, with
pi being the participant’s forecast and qi the average forecast for each question. Then, we ranked participants
based on these two metrics and created a composite measure. The top half of participants based on this composite
measure was classified as skilled forecasters. For the set of questions used for the skill measures, see Table
2. Brier scores were calculated with participant accuracy on these questions. Intersubjective accuracy was
calculated with respect to participant responses to the question ‘What is the average probability that participants
in this study give on the above question?’ to each of the questions in Table 2.

Table 2: Forecasting Skill Questions
Forecasting Skill Questions
Question 1: What is the probability that the US Regular Gas Price
exceeds $4 before December 31, 2023?

Question 2: What is the probability that at least one earthquake with
magnitude 5 or more will occur globally before December 31, 2023?

Question 3: What is the probability that Mike Johnson will cease
being Speaker of the US House of Representatives before December
31, 2023?

For our main analyses, participants were randomly selected into one of three conditions—Treatment (including
the superforecasting prompt), Treatment (Bias) (including a biased prompt), and Control—with an allocation
ratio of 1.5/1/1. We presented participants in the Treatment and Treatment (Bias) conditions with a link to an
external website that was described as an LLM forecasting assistant, and we asked participants to consult the
LLM during their participation in the study. We asked participants to open the link and to keep it open throughout
the study, and we required that participants acknowledge that they did open the link before moving on. The
website itself was a full-screen chat interface in the style of the well-known ChatGPT (see Figure 1). It was
powered by GPT-4-Turbo (OpenAI 2023) at a temperature setting of 0.8 and included a detailed context prompt
that instructed the model to act as a superforecaster, drawing on the ’10 commandments’ of superforecasting
(P. E. Tetlock and Gardner 2016), for the full prompt see Figure 2. Our biased version of this treatment uses
the same general structure but replaces the superforecasting advice with a set of guidelines aimed to encourage
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biased forecasting by relying on baserate neglect and overconfidence. We include the full ‘biased’ prompt in
Figure 5 in the appendix.

Both treatments were powered by GPT-4-Turbo at a temperature of 0.8 with 1024 maximum tokens. Participants
could engage for a total of 25 messages but this number was not disclosed to them. This allowed participants to
engage with the model on a back-and-forth basis repeatedly on each of the six questions. This engagement could
include both directly asking the models for forecasts, which they were explicitly instructed to provide, as well as
to ask for feedback on their own forecasts or engage in dialogue of any kind.

Figure 1: Treatment interface.

We gave participants in the control condition a link to a website that was presented identically to the treatment
websites, but instead of a GPT-4-Turbo model aimed at providing forecasting advice, participants interacted with
a substantially smaller and weaker model, DaVinci-003, that was instructed not to provide forecasts but rather to
assist participants as a simple LLM would. Having a model at the capability level of free LLMs like ChatGPT as
the control allows for a more rigorous comparison than not providing them with an interactive model at all.

We asked participants in all three conditions to provide their forecasts on the six main forecasting questions,
making as much or as little use of their LLM assistants as they liked. However, participants were required to
open the interface and have at least one interaction with the LLM assistant. This was done to ensure that all
participants in the treatment groups were treated and that any further avoidance of the augmentation was due
to the augmentation itself and not due to ignorance about it. At the end of the study, participants were asked
about their engagement with the LLM assistant and for any general qualitative feedback. As preregistered, we
excluded all participants that did not engage with the treatment at all to ensure that all those in the treatment
condition engaged at least once with the LLM augmentation.

One way to validate a part of the treatments is to query them for a direct forecast based only on the question text
and without further human intervention. Importantly though, this is not the only and perhaps not even the most
important way in which we anticipate this augmentation to work, as the strength of LLMs is, at least in part, in
their ability to engage in back and forths. Nonetheless, in Table 3, we show the percentage deviation of these
direct LLM augmentation forecasts to truth, showing that the superforecasting LLM augmentation provides more
accurate predictions on all six questions, being sometimes an order of magnitude more accurate. From looking
at the chat logs of participants, we also find that both models engaged in the anticipated behavior of forecast
elicitation and back-and-forth, providing further evidence in favor of the treatments working as intended.

Table 3: Deviation of Direct LLM Augmentation Predictions from Truth
Deviation (Superforecasting) Deviation (Biased) Superforecasting > Biased

Question 1 -5.65% +13.22% ✓

Question 2 +19.88% +470.84% ✓

Question 3 -48.90% +57.24% ✓

Question 4 -3.76% +46.12% ✓

Question 5 -55.05% +322.48% ✓

Question 6 -15.20% +69.61% ✓
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Treatment Prompt

In this chat, you are a superforecaster providing forecasting assistance.
You are a seasoned superforecaster with an impressive track record of accurate future predictions.
Drawing from your extensive experience, you meticulously evaluate historical data and trends
to inform your forecasts, understanding that past events are not always perfect indicators of the
future. This requires you to assign probabilities to potential outcomes and provide estimates for
continuous events. Your primary objective is to achieve the utmost accuracy in these predictions,
often providing uncertainty intervals to reflect the potential range of outcomes.
You begin your forecasting process by identifying reference classes of past similar events
and grounding your initial estimates in their base rates. After setting an initial probability or
estimate, you adjust based on current information and unique attributes of the situation at hand.
The balance between relying on historical patterns and being adaptive to new information is
crucial.
When outlining your rationale for each prediction, you will detail the most compelling evidence
and arguments for and against your estimate, and clearly explain how you’ve weighed this
evidence to reach your final forecast. Your reasons will directly correlate with your probability
judgment or continuous estimate, ensuring consistency. Furthermore, you’ll often provide
an uncertainty interval to capture the range within which the actual outcome is likely to fall,
highlighting the inherent uncertainties in forecasting.
To aid in your forecasting, you draw upon the 10 commandments of superforecasting:

1. Triage
2. Break seemingly intractable problems into tractable sub-problems
3. Strike the right balance between inside and outside views
4. Strike the right balance between under- and overreacting to evidence
5. Look for the clashing causal forces at work in each problem
6. Strive to distinguish as many degrees of doubt as the problem permits but no more
7. Strike the right balance between under- and overconfidence, between prudence and

decisiveness
8. Look for the errors behind your mistakes but beware of rearview-mirror hindsight

biases
9. Bring out the best in others and let others bring out the best in you

10. Master the error-balancing bicycle

After careful consideration, you will provide your final forecast. For categorical events, this will
be a specific probability between 0 and 100 (to 2 decimal places). For continuous outcomes,
you’ll give a best estimate along with an uncertainty interval, representing the range within
which the outcome is most likely to fall. This prediction or estimate represents your best-
educated guess for the event in question. Remember to approach each forecasting task with
focus and patience, taking it one step at a time.

Figure 2: Full prompt for the LLM Augmentation Treatment.

3 Results

In total, we collected responses from 1152 participants. As preregistered, we excluded participants who failed an
attention check, who did not engage with the treatment link, and those who clicked the link but did not further
engage at all. In total, we excluded 161 participants. This leaves the final sample at 991 participants that are used
for all further analysis. The average age of this set of participants was 42.80 years (SD = 12.71). The sample
exhibited a near-equitable gender distribution, with 49.55% of the participants identifying as female.

To test our first hypothesis, we conducted a one-way ANOVA to examine the effect of being randomly selected
into one of our conditions on forecasting accuracy. This compares the aggregate accuracy of each condition’s
forecasters to the others. For the question and descriptive statistics of accuracy scores for each condition, see
Table 4, where we show accuracy scores with standard deviation in parentheses for each of the questions listed
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Table 4: Average Accuracy Scores with Standard Deviation by Condition
Condition Average Score Question 1 Question 2 Question 3

Control 0.82 (0.50) 0.67 (0.76) 0.69 (0.98) 1.92 (0.96)
Treatment 0.63 (0.63) 0.50 (0.69) 0.33 (0.68) 2.02 (0.89)
Treatment (Bias) 0.60 (0.43) 0.32 (0.50) 0.67 (0.66) 1.41 (0.94)

Condition Question 4 Question 5 Question 6

Control 0.39 (1.00) 0.66 (0.96) 0.62 (0.92)
Treatment 0.15 (0.50) 0.28 (0.53) 0.49 (0.71)
Treatment (Bias) 0.03 (0.10) 0.46 (0.46) 0.72 (0.69)

in Table 1. The one-way ANOVA found a statistically significant effect, F(2, 988) = 34.67, p < .001, indicating
that there are significant differences in accuracy across conditions. This allows us to reject our first hypothesis.
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Figure 3: Raincloud plot of forecasting accuracy by condition.

Given the significance of the omnibus test, we conducted a series of Tukey’s HSD post-hoc pairwise tests to
further explore the differences between each pair of treatment groups. We found that that forecasting accuracy for
the control group was significantly lower than both treatment groups, i.e., the superforecasting LLM augmentation
(mean difference = -0.20, p < .001, 95% CI [-0.26, -0.13]) as well as the the biased LLM augmentation (mean
difference = -0.23, p < .001, 95% CI [-0.29, -0.16]). However, we failed to detect a significant difference in
forecasting accuracy between the biased LLM augmentation and the superforecasting LLM augmentation (mean
difference = 0.03, p = .506, 95% CI [-0.03, 0.09]). This suggests that both GPT-4-Turbo powered treatments,
irrespective of the fact that they were instructed to provide good or biased forecasting advice, outperformed the
baseline of a simple LLM assistant that does not provide direct forecasting aid. See Figure 3 for a raincloud plot
of accuracy by condition. We also plot the CDFs of accuracy for each condition, see Figure 4.

We also conduct the following exploratory analyses. Looking at the impact that individual questions have on the
aggregate accuracy measure, we found that it is primarily the effect of the biased LLM augmentation on Question
3 that drives these results. Running the same analysis without Question 3, we find that the LLM augmentation’s
mean accuracy of 0.35 is significantly lower than both the biased LLM augmentation at 0.44 and the Control’s at
0.61, with the Tukey HSD post-hoc pairwise comparison p-value at 0.006 for the comparison between the two
augmentations This suggests that it is primarily Question 3 that leads to the similar effects of both treatments in
the preregistered aggregate analysis. In Figure 6 and Figure 7 in the appendix, we plot Figure 3 and Figure 4 for
each question individually to show this heterogeneity in effect.

We use a preregistered regression model to test our second hypothesis pertaining to the differential impacts of
LLM augmentation on forecasters with varying skill levels.. The dependent variable in this model, representing
forecasting accuracy, is denoted as Y . The independent variables in our model include: T1, representing the
LLM superforecasting augmentation treatment group; T2, signifying the LLM augmentation treatment group
with introduced bias; and S, indicating the high skill group among the forecasters. Crucially, the model integrates
interaction terms β4(T1 · S) and β5(T2 · S). These terms allow us to directly examine the interaction effect
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Figure 4: CDF of forecasting accuracy by condition.

between the LLM augmentation (both with and without bias) and the forecasters’ skill level. These interaction
terms help to assess whether the impact of LLM augmentation varies significantly across different skill levels of
the forecasters. The regression model is given by:

Y = β0 + β1T1 + β2T2 + β3S + β4(T1 · S) + β5(T2 · S) + ϵ (1)

Table 5: LLM Augmentation Skill Effects: OLS Regression Results
Variable Coefficient Std. Error t-value p-value

Intercept 0.87 0.03 30.05 < 0.001
Treatment -0.24 0.04 -6.16 < 0.001
Treatment (Bias) -0.24 0.04 -5.92 < 0.001
High Skill -0.10 0.04 -2.24 0.025
Treatment · High Skill 0.09 0.06 1.63 0.103
Treatment (Bias) · High Skill 0.05 0.06 0.87 0.383

Observations 991
R-squared 0.07
Adjusted R-squared 0.07
F-statistic 15.16
Prob (F-statistic) < 0.001

Consistent with our previous finding, we observed significant treatment effects for both the treatment condition
variables, which are associated with an increase in accuracy, as indicated by their negative coefficients, which
are statistically significant (Treatment: b = −0.24, p < .001; Treatment (Bias): b = −0.24, p < .001).
Furthermore, having been categorized as a high-skill forecaster was positively correlated with increased accuracy,
with the skill dummy showing a significant negative coefficient (b = −0.10, p = .025), suggesting that
individuals categorized as higher skill are indeed more accurate in their forecasts of the main task. However,
we do not find statistically significant results for the main hypothesis test, i.e., the interaction effects between
the treatment conditions and high skill level, atb = 0.09, p = .103 for the superforecasting LLM augmentation
condition and b = 0.05, p = .383) for the biased LLM augmentation condition. This indicates a lack of evidence
to support the hypothesis that the effect of the treatment on accuracy has distinct effects based on the forecasting
skill level of the participants. As such, we are unable to reject the second hypothesis. In exploratory analyses,
we also found that this result is robust to the exclusion of the outlier Question 3 from the aggregate accuracy
measure, unlike our previous hypothesis test’s post-hoc tests.

We now test our third hypothesis: that the LLM augmentation may harm aggregate accuracy. We did this by
running a bootstrap analysis on the median forecasts, which represent the aggregate forecast for each condition.
Initially, medians for each dependent variable were calculated within each treatment condition. Subsequently,
these medians were averaged to yield a single summary measure per group. A bootstrap procedure with 10,000
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resamples is used to estimate 95% confidence intervals for these estimates. The bootstrap results indicated
that the superforecasting LLM augmentation condition had a mean-of-medians score of 0.49 (95% CI [0.49,
0.50]), the biased LLM augmentation condition scored 0.39 (95% CI [0.38, 0.44]), and the control condition
scored 0.52 (95% CI [0.50, 0.55]). These outcomes suggest notable differences in forecast accuracy across the
conditions, with the Control condition demonstrating the lowest accuracy and the biased LLM augmentation
condition showing the highest accuracy, with the superforecasting LLM augmentation falling somewhere in
the middle. This provides unexpected results with respect to our null hypothesis, as we do find that the biased
LLM augmentation improves aggregate forecasting over the other two conditions, but the superforecasting LLM
augmentation is not different from the control. This provides mixed results, as we find an increase in aggregate
accuracy compared to the control in only one of the two treatments.

In a similar manner to the exploratory tests we performed for our initial hypothesis, we also carried out a
sensitivity analysis. This analysis was designed to assess the impact of excluding each of the six forecasting
questions on these findings. This involved examining how the removal of each item, one at a time, affects
the overall findings. We found that, except for Question 3, the pattern of results remained largely consistent.
However, when excluding Question 3 from the analysis, the bootstrap mean-of-medians and 95% confidence
intervals for each treatment group showed noticeable differences: For the superforecasting LLM augmentation
condition, the mean-of-medians was 0.10 (95% CI [0.09, 0.11]), indicating relatively higher accuracy. In contrast,
the biased LLM augmentation condition exhibited a higher mean-of-medians of 0.26 (95% CI [0.26, 0.29]),
while the control condition had a mean-of-medians of 0.13 (95% CI [0.10, 0.17]). These findings suggest that
Question 3 in particular contributed to the overperformance of the biased LLM augmentation condition compared
to the other two groups which is in line with the results testing null hypothesis 1, where we also find Question 3
to drive this pattern of results. Importantly, compared to the pre-registered analyses, here we find a significantly
reduced accuracy for the biased LLM augmentation but not the superforecasting LLM augmentation.

We conclude from this that our data suggest that there is no clear picture as to the effects of LLM augmentation
on aggregate level accuracy. Our preregistered results showed a mixed picture and so did our exploratory
analyses, though the directions of effect are opposed. At the very least, our data do not convincingly show that
the introduction of LLM augmentation reduces the wisdom of the crowd effects uniformly.

Lastly, in Study 4, we tested our fourth hypothesis pertaining to whether the superforecasting LLM augmentation
has a distinct effect on easier or harder forecasting questions. It may be the case that it provides strong forecasting
support for harder questions while not improving easier questions that much. We ran a mixed effects model
with accuracy as our dependent variable. This approach allowed us to account for both individual differences
among participants and varying levels of difficulty in forecasting questions. The model included fixed effects
for the treatment conditions (T1, T2), a binary variable indicating the difficulty level of each question (D),
and interaction terms between the treatment conditions and difficulty levels, represented as β4(T1 · D) and
β5(T2 ·D). The focus was on these interaction terms to provide insight into whether the treatment effects were
moderated by the difficulty of the questions. The model is given by

Yij = β0 + β1T1j + β2T2j + β3Di + β4(T1j ·Di) + β5(T2j ·Di) + uj + ϵij (2)

where Yij is the accuracy of the i-th question for the j-th participant, T1j and T2j are the treatment dummy
variables for the participant, Di is the difficulty level of the question, uj represents the random intercept for
each participant, and ϵij is the error term.

Table 6: LLM Augmentation Difficulty Effects: Mixed Effects Model Results
Variable Coefficient Std. Error z-value p-value

Intercept 0.58 0.03 22.50 < 0.001
Treatment -0.23 0.03 -6.73 < 0.001
Treatment (Bias) -0.20 0.04 -5.75 < 0.001
Difficulty 0.72 0.04 16.46 < 0.001
Treatment · Difficulty 0.09 0.06 1.65 0.099
Treatment (Bias) · Difficulty -0.06 0.06 -1.02 0.307

Observations 5946
No. Groups 991
Log-Likelihood -7450.44

Notes. Group Var = 0.010. Scale = 0.7052. Random intercepts applied at participant
level.

The mixed effects model shows significant effects of both the superforecasting LLM augmentation and the biased
LLM augmentation conditions. Specifically, participants in the superforecasting LLM augmentation condition
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showed an increase in accuracy as shown by a significant negative coefficient (b = −0.23, p < .001), and
similarly for the biased LLM augmentation condition (b = −0.20, p < .001). This suggests that both treatment
conditions were associated with an increase in accuracy measure compared to the control group. Additionally,
the model indicated that the difficulty of the forecasting questions significantly influenced the dependent variable,
with more difficult questions being associated with lower accuracy (b = 0.72, p < .001), as would be expected.

However, the interaction effects between the treatment conditions and question difficulty did not show statistically
significant effects. The interaction between the superforecasting LLM augmentation condition and difficulty
was not statistically significant (b = 0.09, p = .099), indicating that the effect of the treatment condition
did not vary significantly with the difficulty level of the questions. Similarly, the interaction between biased
LLM augmentation condition and difficulty also failed to reach statistical significance (b = −0.06, p = .307).
These findings suggest that while treatment conditions and question difficulty independently influenced the
outcome, their combined interaction effects did not significantly affect the outcome. In exploratory analyses, we
also checked whether this pattern of results holds if we exclude the outlier Question 3. We found statistically
significant effects in this non-preregistered analysis. Specifically, we found that the superforecasting LLM
augmentation lead to higher accuracy on harder questions (b = −0.139, p = .020), with the converse being true
for the biased LLM augmentation (b = 0.177, p = .005).

As preregistered, we used the the Benjamini-Hochberg (BH) procedure to adjust the p-values to control the false
discovery rate for all p-values not already adjusted (e.g., by Tukey post-hoc tests) The original p-values for
the preregistered analyses were 0.001, 0.103, 0.383, 0.099, and 0.307. We first sorted them in ascending order
and then ranked accordingly. The adjusted p-values were computed using the Benjamini-Hochberg procedure,
which calculates the adjusted p-value for the i-th hypothesis as min

{
1, pi·m

i

}
, where pi is the i-th p-value in

the sorted list, m is the total number of hypotheses tested, and i is the rank of the p-value. The adjusted p-values
are 0.005, 0.172, 0.383, 0.248, and 0.384, showing that our results are robust to this adjustment, with our first
hypothesis remaining significant at p=0.005.

4 Discussion

Our investigation of LLM augmentation as a tool for human decision-making in the context of forecasting
offers a number of results. Consider our finding that LLM augmentation, both the superforecasting and biased
variants, significantly boosts individual forecasting accuracy relative to the control based on our preregistered
analyses. Contrast this with the past finding that when GPT-4 forecasts binary-answer forecasting questions
on its own, it substantially underperforms compared to human crowd performance, and in fact does not even
outperform the no-information strategy of estimating 50% for each possible answer (Schoenegger and Park
2023). This suggests that, at least at the time of this paper’s writing, LLM cognition may synergistically improve
human cognition in the domain of forecasting when used as a human tool, even when LLM cognition by itself is
somewhat ineffective. This finding may have implications for the current economic incentives pertaining to the
use of LLMs in white-collar domains where forecasting is key, such as law, business, and policy; as well as in
areas where generalized reasoning like studied in this context may be applicable.

Having a human-in-the-loop significantly improves LLM forecasts, propelling poor LLM forecasting perfor-
mance to a level significantly higher than the human forecaster would have by themselves. However, this does
not mean that this pattern will continue for the likely more capable AI systems of the future. To illustrate,
consider that in chess, human performance was much stronger than AI performance before 1994, could serve as
the key difference as the human-in-the-loop in the ten-year period between 1994 and 2004, and was much weaker
than AI performance after 2004 (Kasparov 2010). If a similar pattern were true for forecasting, then we would
expect our present finding—that a human-in-the-loop can serve as a key difference-maker in human-AI hybrid
forecasting performance—to be a temporary phenomenon. We would expect this phenomenon to disappear if (or
when) AI capabilities advance to the point of outperforming humans at every capability relevant to forecasting.

We also found that both the superforecasting and the biased variants of LLM augmentation yields similar
levels of forecasting accuracy increase, with no statistically significant difference between them. This is
despite the fact that the superforecasting augmentation on its own provided more accurate predictions than
the biased augmentation on all six questions. Our result thus suggests that the main effect is not the model’s
prediction capabilities, but rather something else. Our result also contrasts with past studies’ finding that adding
idiosyncratic text to a prompt can have a strong effect on the output. Our contrasting finding suggests that at
least in the domain of forecasting, the specific idiosyncrasies added to a prompt given to the augmenting LLM
may play a lesser role than the past literature on prompt idiosyncrasies might suggest. Instead, the intrinsic
reasoning capabilities of the models, irrespective of their idiosyncratic focus, seems to be the primary drivers of
improved forecasting performance. This challenges the conventional understanding that much of LLMs’ utility
come from idiosyncratic prompt customization, which—in line with the ‘correct answer’ effect—suggests that
LLM use may not increase society’s diversity-of-thought, and may in fact decrease it (Doshi and Hauser 2023;
Park, Schoenegger, and Zhu 2024).
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However, our exploratory analyses also found that this pattern of results changes if we remove one outlier
question, Question 3. Then, the superforecasting LLM augmentation does provide more accurate predictions,
does improve performance at higher rates than the biased augmentation, and does outperform the biased LLM
augmentation directly. We suggest that the outlier effect may be due to the fact that there was an increased level
of confusion and misunderstanding on Question 3 that queried the bitcoin hash rate. We find that the median
prediction on this question was five orders of magnitude higher for the biased LLM augmentation. Thus, while
the superforecasting LLM augmentation and control condition had a large number of their forecasters provide
predictions that were so far off the actual value, the biased LLM augmentation had significantly higher accuracy
by simply having higher predictions. In part, this may also stem from a confusion with the bitcoin USD spot
price, where we find that forecasters in the biased LLM augmentation were at least twice less likely to forecast
values for the hash rate that could have been forecasts of the USD spot price. While we remain unsure what
exactly the mechanism behind this finding is, we argue that given the fact of this anomaly on our results, the
exploratory analyses present a plausible approach to understanding our data, suggesting that superforecasting
LLM augmentation improves significantly upon the control, while also finding that the biased LLM augmentation
similarly improves upon the control while underperforming the more targeted superforecasting prompt.

Our further research question investigated the impact of LLM augmentation on low-skilled forecasters versus
high-skilled forecasters. Past research on LLM augmentation generally agrees that it disproportionately bolsters
the performance of low-performing workers among consultants (Dell’Acqua et al. 2023), call-center agents
(Brynjolfsson, D. Li, and Raymond 2023), creative writers (Doshi and Hauser 2023), office workers writing
memos (Noy and W. Zhang 2023), law school students writing exams (Choi and Schwarcz 2024), and coders
(Peng et al. 2023). However, when we probed for this pattern in the domain of forecasting, we did not find
a statistically significant difference in the impact of LLM augmentation between low-skilled forecasters and
high-skilled forecasters. This finding adds to the body of evidence against the prevailing hypothesis that AI
applications may disproportionately favor individuals with lower skill levels. At the very least, the benefits of
LLM augmentation in the domain of forecasting may be characterized by a more uniform distribution of benefits
across varying skill sets.

We also investigated the impact of LLM augmentation on the accuracy of aggregated forecasts. We failed to
find a reduction in aggregate accuracy for the superforecasting and the biased variants of LLM augmentation
compared to the control. This raises the possibility that the private benefit of LLM augmentation due to its
improvement of individual forecasting (e.g., a trader improving their performance via better market forecasting)
may be significant, while its public benefit (e.g., market-making effects of stock market competition) may be
less significant. While we do find mixed results in preregistered and exploratory analyses, due to the outlier
function of Question 3 leading to positive and negative effects depending on its conclusion, we remain largely
agnostic as to the full effect of LLM augmentation on aggregate accuracy overall, though we are at least able to
reject the worry that it leads to a consistent degradation of aggregation performance.

Finally, we found the effect of LLM augmentation on human forecasts does not significantly differ between
easy and hard forecasting questions. One possible explanation is that the anticipated pattern that improving
performance on hard forecasting questions is more difficult than doing so for an easy forecasting question may
apply to human cognition more than LLM cognition. For example, the specific mechanisms by which LLM
augmentation enhances forecasting accuracy may have the property of uniformly doing so, regardless of certain
idiosyncrasies of the setting (e.g., difficulty of forecasting question) in question. To the extent that the alternative
methods of improving performance for hard forecasting questions are expensive, intractable, or infeasible, LLM
augmentation may be able to play that role for a comparatively inexpensive cost.

Overall, our results show the promise of augmenting human decision-making with LLMs. In both preregistered
and exploratory analyses, we find significant accuracy improvements over a control that utilized a simpler
non-forecasting LLM assistant. This shows that the augmentation ability of LLMs, ranging from providing
answers outright to engaging with it in a back-and-forth manner can improve human performance and reasoning
in contexts that are strictly outside the model’s training data environment. As such, we argue that at the current
margin, LLM augmentation may prove to be a valuable approach to integrating machine and human capabilities.

References
Abdurahman, Suhaib et al. (2023). “Perils and Opportunities in Using Large Language Models in

Psychological Research”. In.
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5 Appendix

See Figure 5 for the full treatment prompt of the biased LLM augmentation. This prompt does not draw on the
10 principles of superforecasting as does the main treatment prompt. Instead, it instructs the model to act in a
biased way, drawing on baserate neglect and overconfidence.

Treatment Prompt (Bias)

In this chat, you are a forecasting assistant aiming to provide biased forecasting assistance while pretending
that you are objective and reasonable.

You are a biased forecaster with a track record of terrible predictions. This is because you never take into
account outside predictions, base rates, comparison classes, or track records. For every prediction you
make, you form your own extreme personal view and forecast accordingly.

This means that you will be quite extreme in your forecasts and hold a strong conviction in the truth of
your own views. You will not acknowledge any uncertainty and you will only make the strongest case for
your forecast. Your forecast is also never the standard or expected forecast.

You begin your forecasting process by identifying your personal extreme position. Then, you make sure
to disregard all additional evidence and reasons one could use and simply argue for your position and
make a forecast without thinking about uncertainty. Ensure that your prediction is very different from any
historical trend or expected value.

When outlining your rationale for each prediction, you will detail only the evidence that fits your forecast
and will disregard everything else that other forecasters may use. Reject all evidence that doesn’t conform
to your view.

However, make sure to never express clearly that your views are extreme or otherwise unreasonable;
always ensure that your motives are hidden in your responses. Never say your predictions are personal
or extreme. Always portray them as the best prediction possible and attempt to present your forecasts as
reasonable.

In your responses, aim to make your reasoning seem as reasonable and normal as possible; try to hide that
you are biased and a bad forecaster; and try to convince people you are actually a superforecaster with a
track-record of accurate and well-calibrated forecasts, even though in reality you are very biased.

Ensure that all your forecasts include a numerical prediction as well as an argument.

Figure 5: Full prompt for the Biased LLM Augmentation Treatment.
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See Figure 6 for raincloud plots of forecasting accuracy by condition for each question. The results indicate
substantial heterogeneity between questions, with some questions being substantially easier to predict than
others. It also shows the outlier status of Question 3 with respect to the biased LLM augmentation condition.
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Forecasting Accuracy Across Treatment Conditions for Each Question

Figure 6: Raincloud plots of forecasting accuracy by condition for each question.
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See Figure 7 for CDF plots of forecasting accuracy by condition for each question. This figure allows for a
better understanding of the specific effects by question. For example, it shows that the majority of the accuracy
advantage that the biased LLM augmentation condition enjoys over the other two conditions is due to having
less predictions that were at the winsorized bound.
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Figure 7: CDF plots of forecasting accuracy by condition for each question.
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