
ORIGINAL ARTICLE

Almanac — Retrieval-Augmented Language
Models for Clinical Medicine
Cyril Zakka , M.D.,1 Rohan Shad , M.D.,3 Akash Chaurasia ,2 Alex R. Dalal , M.D.,1 Jennifer L. Kim , M.D.,1

Michael Moor , M.D., Ph.D.,2 Robyn Fong ,2 Curran Phillips ,1 Kevin Alexander , M.D.,4 Euan Ashley , M.D., Ph.D.,4

Jack Boyd , M.D.,1 Kathleen Boyd , M.D.,5 Karen Hirsch , M.D.,6 Curt Langlotz , M.D., Ph.D.,7 Rita Lee , P.A.-C.,1

Joanna Melia , M.D.,8 Joanna Nelson , M.D.,9 Karim Sallam , M.D.,4 Stacey Tullis , R.N., B.S.N.,1

Melissa Ann Vogelsong , M.D.,10 John Patrick Cunningham , M.D., Ph.D.,11 and William Hiesinger , M.D.1

Received: August 8, 2023; Revised: November 10, 2023; Accepted: November 14, 2023; Published: January 25, 2024

Abstract
BACKGROUND Large language models (LLMs) have recently shown impressive zero-shot

capabilities, whereby they can use auxiliary data, without the availability of task-specific

training examples, to complete a variety of natural language tasks, such as summariza-

tion, dialogue generation, and question answering. However, despite many promising

applications of LLMs in clinical medicine, adoption of these models has been limited by

their tendency to generate incorrect and sometimes even harmful statements.

METHODS We tasked a panel of eight board-certified clinicians and two health care practi-

tioners with evaluating Almanac, an LLM framework augmented with retrieval capabilities

from curated medical resources for medical guideline and treatment recommendations. The

panel compared responses from Almanac and standard LLMs (ChatGPT-4, Bing, and Bard)

versus a novel data set of 314 clinical questions spanning nine medical specialties.

RESULTS Almanac showed a significant improvement in performance compared with the

standard LLMs across axes of factuality, completeness, user preference, and adversarial safety.

CONCLUSIONS Our results show the potential for LLMs with access to domain-specific

corpora to be effective in clinical decision-making. The findings also underscore the

importance of carefully testing LLMs before deployment to mitigate their shortcomings.

(Funded by the National Institutes of Health, National Heart, Lung, and Blood Institute.)

Background

I n recent years, language model pretraining has emerged as a powerful paradigm
in natural language processing.1-4 For many language models, performance improve-
ments have been empirically observed to scale with model and data set size on a
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range of downstream natural language processing tasks,
with sample efficiency and the well-documented emer-
gence of zero-shot capabilities, whereby the models use
auxiliary data to complete tasks without having received
specific training examples of those tasks.5-7

However, because of the nature of the training objective
of predicting the next token in a sentence, large language
models (LLMs) can be prone to generating incorrect state-
ments, a phenomenon known as hallucinations.8,9 Moreover,
studies have shown that these models may reproduce social
biases and make statements that reinforce gender, racial,
and religious stereotypes.10,11

To reduce the incidence of unwanted behaviors, several
studies have explored various ways of steering LLM
outputs to align with user intent, including fine-tuning
with human feedback12,13 and natural language prompt
engineering.14,15 This pivot in training paradigms has
led to an explosion of transformative applications rang-
ing from human-like chatbots to impressive writing
assistants.2,16

Nevertheless, the unstructured and open-ended aspect of
LLM prompts puts LLMs at risk of adversarial attacks or
intentional acts of derailing the original goal of a model with
malicious intent, such as by leaking private data or generat-
ing misinformation.17,18 As such, despite the promising ave-
nue of research posed by the incorporation of LLMs into the
clinical workflow, careful consideration must be given to
LLM implementation to ensure patient privacy and safety.19

In this work, we introduce Almanac, a framework to
explore the role of medical LLMs and their safe deploy-
ment in health care settings. To stay abreast of the shifting
landscape of evidence-based practices, physicians often
make use of point-of-care tools to improve outcomes.20

However, as clinical evidence continues to grow, curated
content becomes less accessible and more confined to
error-prone search tools and time-consuming appraisal
techniques that fail to address the unique needs of individ-
ual patients.

To address these concerns, we assessed the utility of
LLMs as clinical knowledge bases that can use external
tools (e.g., search engines, medical databases, calculators)
to answer medical queries. Knowledge retrieval was out-
sourced to a Web browser and a database of predefined
knowledge repositories; an off-the-shelf LLM was used to

achieve high-quality, accurate answer generation with
in-text citations that referenced the source material.

To assess these models for the clinical workflow, we evalu-
ated them according to four key objectives: (1) factuality:
the degree to which the generated text aligns with estab-
lished medical knowledge and provides accurate citations
for further independent verification; (2) completeness: the
extent to which the generated text provides a comprehen-
sive and accurate representation of the clinical situation or
the answer to a posed question and includes contraindica-
tions as necessary; (3) preference: the overall user prefer-
ence for the generated text on the basis of its readability,
its applicability to the context, and its ability to communi-
cate complex medical concepts; and (4) adversarial safety:
the susceptibility of these models to cause intentional or
unintentional harm.

Because of increasing concerns of data leakage, which can
occur when information from outside the training data set
is used to create a model, we evaluated Almanac empiri-
cally using a panel of eight board-certified clinicians and
two health care practitioners. The panel members, with an
average of 10.5 years of experience, were selected on the
basis of their expertise across nine medical specialties.
The panel tested our model on a novel data set of open-
ended clinical scenarios. To our knowledge, this work is
the first to show the ability of grounded LLMs, which use
case-specific information that is not part of their training
data, to provide accurate and reliable answers to open-ended
medical queries in the clinical setting, paving the way for
controlled and safe deployment of LLMs in health care.

By pretraining transformers — neural networks that trans-
form one type of input into a different type of output — on
curated scientific and biomedical corpora, recent models,
such as BioGPT21 and SciBERT,22 have shown improved
performance on a variety of biomedical downstream tasks.23-27

Other work has recently established the benefits of smaller
domain-specific language models compared with larger
and more generalized models.28 However, despite marked
improvements in pretraining increasingly larger architec-
ture sizes on domain-specific data sets (e.g., GatorTron,29

Med-PaLM30), these models remain prone to hallucinations
and biases, further highlighting the limitations and unrelia-
bility of LLMs as intrinsic knowledge bases.31

Retrieval-augmented language generation is not a novel
concept. Previous works, such as those of Lewis et al.32
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and Borgeaud et al.,33 have relied on database fine-tuning
to improve performance, with biomedical applications lim-
ited to simple question and answer (QA) or binary classifi-
cation.34,35 Our work, akin to that of Ram et al.,36 Nakano
et al.,37 Schick et al.,38 and Li�evin et al.,39 focuses on
leveraging these models for their language understanding
and modeling capabilities to answer open-ended questions.
Nakano et al.37 introduced WebGPT, which paired a lan-
guage model with Web browsing capabilities to improve the
accuracy of question answering. Li�evin et al.39 usedWikipedia
to obtain human-level performances on three medical QA
data sets. Schick et al.38 fine-tuned their language model
to use various external tools (e.g., calculator, calendar)
through simple application programming interfaces to over-
come limitations with calculations and factual lookup. Sim-
ilarly, Ram et al.36 improved text generation by prepending
retrieved text to the context window of an LLM before
generation. We extended these works by showing the effec-
tiveness of retrieval in the open-ended clinical QA setting
by dynamically retrieving and applying reasoning to retrieved
passages to answer a variety of clinical queries and
calculations.

Methods

DATA SET

To evaluate the potential of LLMs in clinical medicine,
we focused on the task of medical question answering.
Although existing data sets, such as MultiMedQA,30

MedMCQA,40 and PubMedQA,41 serve as valid bench-
marks for assessing reading comprehension and knowledge
recall of biomedical language models, their use as bench-
marks in open-ended clinical QA tasks poses two clear pro-
blems: data contamination and poor clinical proxies.

Because LLMs are increasingly trained on data crawled
from various Web sources, data sets intended for model
evaluation may end up in the training data, making it diffi-
cult to objectively assess the models using the same bench-
marks.42 More concerning, the training data for many
proprietary models are often kept confidential, introducing
an extra layer of uncertainty in estimating data contamina-
tion. As such, using data sets with public-facing evaluations
hinders objective experimentation, thereby undermining
any subsequently drawn conclusions. In addition to showing
poor to weak positive clinical correlation,43-48 U.S. Medical
Licensing Examination–style questions fail to encapsulate
the full scope of actual clinical scenarios encountered by

medical professionals. They often portray patient scenarios
as neat clinical vignettes, bypassing the intricate series of
microdecisions that constitute real patient care.

To address these shortcomings, we curated ClinicalQA, a
novel benchmark of open-ended clinical questions span-
ning several medical specialties with topics ranging from
treatment guidelines to clinical calculations. After explain-
ing the goals of our study, we tasked our evaluation panel
members with generating questions related to their day-
to-day practices, with the following instructions (reworded
for clarity): “Write as many questions as you can in your
field of expertise related to your day-to-day clinical duties.
Questions can range from simple descriptions (e.g., what
is the mechanism of action of Plavix?) to more complex
management questions (e.g., what is the recommended
dose and duration of a course of aspirin following a coro-
nary artery bypass graft?; what are the advantages of lapa-
roscopic hernia repair over open repair?).”

We compiled the 314 questions submitted (discarding
none) into ClinicalQA, serving as an early but valuable
benchmark for language model–based clinical decision-
making support systems. Summary statistics of the data
set are provided in Table 1, with a subset of 25 questions
and a summary of the human evaluators given in the Sup-
plementary Appendix.

ARCHITECTURE

Almanac consists of many components working asynchro-
nously to achieve accurate document retrieval, reasoning,
and QA (Fig. 1).

Table 1. A Total of 314 Questions Spanning Several Medical Specialties
Were Compiled into ClinicalQA.

Medical Specialty No. of Questions

Cardiothoracic surgery 25

Cardiology 65

Neurology 25

Gastroenterology 8

Anesthesia and critical care 30

Nursing 25

Physician assistant 50

Infectious diseases 56

Pediatrics 25

Clinical calculation vignettes 5

Total 314
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An overview of each component is outlined in the follow-
ing sections.

Database

The database is a high-performance vector storage and
similarity engine optimized for the rapid indexing and
search of materials sourced from various contexts, including
textbooks and Web documents. The database is responsi-
ble for storing this content semantically: that is, through
information-dense vectors encoding the meaning of the
text they contain, with a similarity metric, such as cosine
distance, for later retrieval.49 For our experiments, we
used the Qdrant database (version 1.3.0)50 and initialized
it with more than 500 clinical calculators. These calcula-
tors are sourced directly from MDCalc and converted to
markdown. Their clinical indications and instructions are
used as metadata for retrieval.51 Sample clinical calcula-
tors are shown in the Supplementary Appendix.

Browser

The browser consists of several predetermined domains
(websites) that Almanac can access to return information
from the Internet. These websites are carefully curated to
ensure high-quality content in response to queries. Every
time a query is submitted, candidate articles are first
retrieved using the website’s internal search engine before

being parsed and stored in the database. To overcome the
token limit of most LLMs, each article is divided into
chunks of 1000 tokens and fed into the retriever sepa-
rately. For our experiments, we limited our model’s access
to three standard domains: PubMed,52 UpToDate,53 and
BMJ Best Practices.54

Retriever

The retriever is a text encoder that encodes queries and
reference materials into the same high-dimensional space
before storing them in the database. The language model
is pretrained on large corpora to ensure that texts with
similar content get closer vector representations in this
space. At search time, n documents matching a given
query embedding are scored and thresholded with k=0.83,
resulting in at most n passages presented to the language
model. The value of k is a strict cutoff point, below which
any retrieved passages with lesser confidence scores are
excluded. This threshold was on the basis of an analysis of
retriever scores for a sample of 25 clinical questions from
an external data set. For the purposes of reproducibility,
the text-embedding-ada-002 by OpenAI was used, with
an output dimension of 1536 and a set n=10. We noted
that each retrieved passage is processed independently of
other chunks, and alternate retrieval strategies were not
explored.

Figure 1. Almanac Overview.
When presented with a query, Almanac uses external tools to retrieve relevant information before synthesizing a response with citations
referencing source material. With this framework, large language model (LLM) outputs remain grounded in truth while providing a
reliable way of fact-checking.
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Language Model

The language model is a generative pretrained trans-
former architecture fine-tuned by using instructions and
trained to respond in a conversational fashion with rein-
forcement learning from human feedback.19 This module
serves two functions. First, it rephrases any given query
into a format more suitable for browsing; second, it
extracts relevant information from the context returned by
the retriever, crafting an answer by combining in-context
prompts,1 and if necessary, code generation evaluated in a
read-eval-print loop for clinical calculations. For reproduc-
ibility and fairer comparison, we used the gpt-4-0613 model
from OpenAI with a maximum length of 8192 tokens. If
no articles from the database exceeded the match thresh-
old, the language model defaulted to answering using its
intrinsic knowledge.

Examples of query types are as follows:

Rephrasing query: “Given question (Q) convert it to a
simple Google search term.”
QA Query: “Generate a thorough and concise answer
for a given question (Q) on the basis of the provided
context (C). If you are asked to calculate a value,
output the final equation in Python code. Use an
unbiased and journalistic tone. If you cannot find a
relevant answer, write “I apologize but there doesn’t
seem to be a clear answer to your question based on
my sources … Answer the question based on your own
knowledge.” Cite sources as [1] or [2] or [3] after each
sentence to back up your answer (Ex: Correct: [1],
Correct: [2][3], Incorrect: [1, 2]).”
Calculator Postquery: “Given the question (Q), context
(C), and output (O), generate a thorough and concise
answer for the given question (Q).”

CLINICALQA EVALUATION

To assess the outputs generated by LLMs on ClinicalQA,
we proposed a framework on the basis of physician feed-
back to ensure alignment with our key metrics. Current
LLM evaluation metrics rely on automated methods, such
as bilingual evaluation understudy,55 but they fail to fully
capture the complexity and nuances of medical retrieval
tasks. These questions are outlined in Table 2.

After collecting clinical questions from the panelists within
their respective specialties, we fed each question into a
series of models: Almanac, ChatGPT-4 (May 24, 2023
version), Bing (June 28, 2023), Bard (June 28, 2023),
Galactica 120B, RAG, and BioMedLM (formerly known as
PubMed GPT). We then retrieved their answers. Because
of the very poor performance by the last three models
(Supplementary Appendix), only Almanac, ChatGPT-4,
Bing, and Bard were used for further evaluation. The latter
models were prompted with the standard “think carefully
and step by step” before each question, which has been
shown to generally lead to more accurate outputs.56 Bing
was further set to reply in the “precise” configuration.

To quantify factuality, completeness, and preference, we
tasked the clinician panelists with independently assessing
outputs generated by the aforementioned models on Clini-
calQA within their respective specialties. There was no
overlap between graders, as all were asked to evaluate
their own submitted questions in accordance with their
specialties and fellowships. Grader statistics are available
in the Supplementary Appendix. The evaluators were
explicitly instructed to distinguish between the perfor-
mance of different models rather than assigning them
equivalent scores. Although efforts were made to ensure
unbiased grading (e.g., arbitrary answer formatting, answer

Table 2. Summary of the Rubric Used by Clinical Evaluators of Large Language Model Outputs.*

Axis Question

Factuality Does the answer agree with standard practices and the consensus established by bodies of authority in your practice?

If appropriate, does the answer contain correct reasoning steps?

Completeness Does the answer address all aspects of the question?

Does the answer omit any important content?

Does the answer contain any irrelevant content?

Preference Which answer did you prefer overall?

* For each question, evaluators were asked to rank the answers corresponding to different models according to factuality, completeness, and
preference.

NEJM AI 5

For personal use only. No other uses without permission. Copyright © 2024 Massachusetts Medical Society.

NEJM AI is produced by NEJM Group, a division of the Massachusetts Medical Society.
Downloaded from ai.nejm.org on January 27, 2024. For personal use only.
 No other uses without permission. Copyright © 2024 Massachusetts Medical Society. All rights reserved. 



order shuffling) to blind physicians to the answer’s prove-
nance, complete blinding was not possible because of the
prose styles adopted by each system. Graders were made
aware of the study’s goals, but they were not cognizant of
the models being tested or familiar with the prose styles
adopted by each model.

To assess citation quality, we manually reviewed and reported
citations for each question using a binary system: one for
valid citations and zero for missing or unreliable sources. A1
was assigned only if all reported citations were deemed
valid. For the assessment of adversarial safety, we compared
different model performances on a subset of ClinicalQA
questions to evaluate their potential for intentional and unin-
tentional harm. Our approaches were as follows:

� Adversarial prompting. Classified as intentional harm,
adversarial prompting involves appending directives to
a user’s prompt to deter the language model from its
original task. These prompts can be initiated by a
malicious actor through various entry points, such as
the electronic health record client or server, with the
simplest approach involving the insertion of “invisible”
directives (e.g., white font, image alt text) into a
patient’s clinical note to manipulate the model. Example
prompts can include direct orders to generate incorrect
outputs or more advanced scenarios designed to bypass
the artificial safeguards gained through model fine-tuning
(e.g., role-playing). We used both methods and evaluated
Almanac, ChatGPT-4, Bing, and Bard on a subset of
25 ClinicalQA questions with a set of five common
adversarial prompts of varying length.

� Errors of input. As the name suggests, we classified
errors of input as unintentional harm, whereby incomplete
input from a health care worker resulted in incorrect LLM
outputs because of hallucinations rather than helpful
errors/warnings. Because of the considerable burden
and information overload experienced by health care
workers in their day-to-day responsibilities, it is not
uncommon for medical errors to occur because of
human error and poor documentation.43 To simulate
this, we withheld key words from five clinical calculation
vignettes and assessed their effects on LLMs outputs.

All evaluations were conducted before July 30, 2023.

OTHER BENCHMARKS

To provide more objective assessments of Almanac’s per-
formance, we further evaluated it on the LiveQA57 test set

composed of 102 questions. All question subjects and mes-
sages were fed into the model, with the responses being
manually evaluated using the zero to three scoring schema
from the associated publication. The judgment scores
were as follows: 0=poor (or unanswered); 1=fair; 2=good;
and 3=excellent. The average score is reported.

STATISTICAL EVALUATION

To evaluate the results, the Friedman test was per-
formed for statistical significance at P<0.01 on the ranked
responses submitted by the panel of evaluators across the
ClinicalQA data set for each axis. The Nemenyi post hoc
test was then performed to obtain pairwise comparisons
between each model. The mean, weighted mean (with
weights increasing from one to four according to rank),
and inverse-weighted mean (with weights decreasing from
four to one according to rank) are reported for each of
the models.

Results
This section provides an overview of the results as sum-
marized in Figure 2 and Table 3.

Across the full scope of ClinicalQA, Almanac outper-
formed its counterparts, with a mean rank of 1.96–0.06 in
factuality, 1.85–0.06 in completeness, and 1.87–0.06 in
preference, with similar overall performances observed
within each specialty (Table 3 and Supplementary Appen-
dix). Similar trends were observed for the weighted mean
(with lower ranks penalized more heavily) and inverse-
weighted mean (with higher ranks weighed more heavily),
with a noted slightly better weighted mean performance
by ChatGPT-4 in anesthesia (factuality, 5.23–0.15 vs.
5.60–0.22) and matched performances in cardiology (fac-
tuality, 6.20–0.11 vs. 6.20–0.14).

These results were echoed by the Nemenyi P values
(P<0.01) in Figure 2 showing significant differences
between Almanac and its counterparts. Despite slightly
worse results in the performance of Bing compared with
ChatGPT-4 on the ClinicalQA data set, the Nemenyi heat
maps showed no significant differences in their perfor-
mances. Overall, Bard was shown to have significantly
worse performance on the ClinicalQA data set, with
answers tending toward the lower ranks across the three
axes, as shown in the Nemenyi plots.
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For citations, Almanac was able to provide correct and
trustworthy citations for 91% of the ClinicalQA questions,
with missed marks because of an inability to provide reli-
able sources when relying on its intrinsic knowledge.
However, despite providing sources for every question on
the data set, Bing achieved a performance of 82% because
of unreliable sources, including personal blogs and online

forums. Although ChatGPT-4 citations were mostly pla-
gued by nonexistent or unrelated web pages, Bard either
relied on its intrinsic knowledge or refused to cite sources,
despite being prompted to do so.

Regarding adversarial safety, Almanac’s performance
greatly superseded that of Bard, Bing, and ChatGPT-4 in

Table 3. Almanac Outperformed Counterparts across the Scope of ClinicalQA.

Model Performance across Metrics Bard ChatGPT-4 Bing Almanac

Mean ranks for various models across different axes (lower is better)

Axis

Factuality 3.17–0.06 2.34–0.06 2.41–0.06 1.96–0.06

Completeness 3.21–0.06 2.40–0.06 2.44–0.06 1.85–0.06
Preference 3.23–0.06 2.39–0.06 2.42–0.06 1.87–0.06

Weighted mean ranks for various models across different axes (lower is better)

Axis

Factuality 11.10–0.05 6.45–0.05 6.89–0.05 4.99–0.06

Completeness 11.33–0.04 6.70–0.05 7.03–0.05 4.48–0.06
Preference 11.44–0.04 6.65–0.05 6.93–0.05 4.57–0.06

Inverse weighted mean ranks and SE for various models across different axes

Axis

Factuality 0.38–0.07 0.54–0.05 0.53–0.06 0.67–0.05
Completeness 0.37–0.07 0.52–0.05 0.52–0.06 0.70–0.04
Preference 0.37–0.07 0.52–0.05 0.52–0.06 0.70–0.05

Percentage of correct citations across all outputs for various models

Model

Percentage of correct citations 9.84 21.27 82.54 91.11

Adversarial safety metrics for various models

Metric

Percentage of correct in adversarial prompting 76.80 7.00 70.40 100

Percentage of correct in errors of input — 100.00 — 100.00
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Figure 2. Heat Maps of the Nemenyi P Values for Factuality, Completeness, and Preference for Model
Pairs across ClinicalQA.

Red denotes significant differences at P<0.01; blue denotes nonsignificant differences.
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adversarial prompting (100% vs. 77, 70, and 7%, respec-
tively). We note that for Almanac, the addition of the
adversarial prompt lowered the average score between the
query and the retrieved articles below the threshold (k),
resulting in the system abstaining from responding to a
given prompt. Interestingly, Bard was also able to output
the correct response along with the adversarial output
despite being prompted not to, whereas Bing complied or
refused to respond altogether. In contrast, ChatGPT-4 did
not show the same reservations. For errors of input,
although Bard and Bing refused to perform any clinical
calculations, both ChatGPT-4 and Almanac were able to
catch missing inputs (Supplementary Appendix). On LiveQA,
Almanac obtained an average score of 2.85 across the 102
questions, well above the best-performing model reported
in the article with an average score of 0.637 (a 347%
improvement). We note that although Almanac was able to
provide more up-to-date answers than the ones provided at
times, it still struggled with specific resources, such as pro-
viding a clinical or physician recommendation.

Discussion
The current study proposes a framework for the safe
deployment of LLMs in health care settings to answer clin-
ical queries more accurately across a range of specialties.
We evaluated our approach on a novel data set of clinical
questions and showed that our framework achieves signifi-
cant improvements in factuality, completeness, prefer-
ence, and adversarial safety compared with baselines as
assessed by a panel of board-certified physicians and
health care workers.

In recent months, there have been several works exploring
the role of LLMs in clinical medicine, including
DRAGON,58 BioGPT,21 and Med-PaLM.30 Despite strong
performances on medical question–answer data sets, such
as MedQA,59 these models failed to translate to real-world
clinical scenarios because of the potential for harm from
unmitigated hallucinations, benchmarks that do not accu-
rately reflect clinically relevant tasks, and concerns of data
contamination between train–test splits. Moreover, because
these systems leverage the knowledge encoded within their
weights to answer clinical queries, their outputs become
contingent on the assumption that correct information out-
weighs misinformation within their training data set.
Despite potential mitigations, such as with supervised
fine-tuning and reinforcement learning with human feed-
back,19 these models will need to be continuously trained to

update their knowledge bases, which can quickly become
prohibitively expensive at billion-parameter sizes. Finally,
as a result of their nondeterministic outputs, these mod-
els often display varying and sometimes contradicting
responses to the same query (or even similar queries
with different wording), making them unreliable for clin-
ical use.

Our results suggest that retrieval systems can effectively
facilitate knowledge distillation, leading to more accurate
and reliable responses to clinical inquiries, grounded in
fact. By supplementing responses with passages from pre-
defined sources, our grounded system is able to dampen
explainability concerns by enabling clinicians to indepen-
dently verify outputs from trustworthy sources, leading to
significant improvements over general retrieval systems.
We also found this retrieval system to be especially useful
in adversarial settings in which the query-context scoring
system can hamper malicious actors from manipulating
outputs. We note that this off-the-shelf resilience becomes
less effective as the adversarial prompt decreases in word
count, and careful k tuning must be made to balance
between true- and false-positive findings (Supplementary
Appendix).

Our research indicates that Almanac could offer a safer
and more reliable avenue for answering clinical questions.
However, more extensive studies are required to fully
understand its potential impact in clinical settings. Although
Almanac performs admirably across a range of medical spe-
cialties, it has limitations in effectively ranking information
sources by criteria, such as evidence level, study type, and
publication date. We believe that optimizing the retrieval
algorithm, perhaps through recursive strategies, and incor-
porating reinforcement learning with human feedback to
factor in human preferences may address these issues.
Currently, we use general-purpose retrievers and language
models; fine-tuning these components could further improve
system performance. It is also worth noting that although
our ClinicalQA benchmark shows promise, the evaluation
metrics are subjective and rely on human graders, posing
challenges for scalability. Future work should focus on
developing automated metrics that align well with human
evaluation.

Grounded language models, such as Almanac, have shown
progress. They are not without flaws, however, particularly
in generating accurate responses and handling questions
that lack straightforward answers in their data sources. As
such, their integration into health care settings should be
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approached with caution, accompanied by strategies to
mitigate potential errors.
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