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ABSTRACT

Objectives Risk stratification tools that predict healthcare
utilisation are extensively integrated into primary

care systems worldwide, forming a key component of
anticipatory care pathways, where high-risk individuals
are targeted by preventative interventions. Existing work
broadly focuses on comparing model performance in
retrospective cohorts with little attention paid to efficacy
in reducing morbidity when deployed in different global
contexts. We review the evidence supporting the use

of such tools in real-world settings, from retrospective
dataset performance to pathway evaluation.

Methods A systematic search was undertaken to
identify studies reporting the development, validation and
deployment of models that predict healthcare utilisation
in unselected primary care cohorts, comparable to their
current real-world application.

Results Among 3897 articles screened, 51 studies
were identified evaluating 28 risk prediction models. Half
underwent external validation yet only two were validated
internationally. No association between validation context
and model discrimination was observed. The majority

of real-world evaluation studies reported no change, or
indeed significant increases, in healthcare utilisation
within targeted groups, with only one-third of reports
demonstrating some benefit.

Discussion While model discrimination appears
satisfactorily robust to application context there is little
evidence to suggest that accurate identification of high-
risk individuals can be reliably translated to improvements
in service delivery or morbidity.

Conclusions The evidence does not support further
integration of care pathways with costly population-level
interventions based on risk prediction in unselected
primary care cohorts. There is an urgent need to
independently appraise the safety, efficacy and cost-
effectiveness of risk prediction systems that are already
widely deployed within primary care.

INTRODUCTION

Risk stratification tools that predict health-
care resource use are widely used in primary
care settings."® These tools are integral to
population health management (PHM)
strategies around the world, enabled by the
availability of routinely collected data from

,! Joe Zhang,?® Jessica Morley,* Hutan Ashrafian?

WHAT IS ALREADY KNOWN ON THIS TOPIC

= Risk prediction models that stratify primary care
populations according to their likelihood of access-
ing healthcare resources are generally considered
to perform well within similar contexts to those in
which they were derived. It is unclear how they per-
form when deployed in wider global contexts and in-
deed if their application can be harnessed to reduce
resource demands.

WHAT THIS STUDY ADDS

= We find that most models have not been studied
in a sufficient diversity of contexts to appraise the
robustness of prediction, however, those that have
appear to retain their discriminatory ability. The
real-world application of these models to reduce
healthcare resource use in unselected cohorts
has produced disappointing results, with an equal
weight of evidence suggesting a harmful effect as a
beneficial one in this context.

HOW THIS STUDY MIGHT AFFECT RESEARCH,
PRACTICE OR POLICY

= Our results call into question the common, and
costly, practice of commissioning population health
management strategies based on risk stratification
of whole primary care populations without a con-
crete understanding of the associated risks.

sources such as electronic health records.’
Risk stratification tools typically use predic-
tive models that are developed through statis-
tical or machine learning (ML) techniques,
to generate an individual risk score for some
measure of resource use. These scores form
a key component of anticipatory care path-
ways, where those at the highest risk may be
targeted for specific interventions aimed at
reducing future morbidity.*"" The process
by which these tools are ideally developed
and deployed within healthcare systems is
summarised in figure 1.

A growing body of literature describes
the development and validation of risk
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Figure 1 An infographic describing an idealised process for developing and deploying a risk prediction tool within a healthcare
system. In black is the deployment cycle, linking risk prediction tools and their associated population health management
measures to a lifecycle of evidence generation, impact evaluation and monitoring for negative consequences that are fed back

into the model and intervention.

stratification tools in the primary care setting reporting
an acceptable discriminatory power for the majority of
models."  * ¥ However, existing work broadly focuses
on the assessment of model performance within retro-
spective datasets, with little attention paid to their effi-
cacy in real-world settings, where the clinical impacts
of deploying these algorithms within a population are
assessed. Commercial literature asserts the efficacy of
interventions based on algorithmic case selection in
improving key outcomes, such as hospital admission
rates, but suffers from a lack of transparency in data and
methodology."* '

Predictive models that appear accurate in development
are increasingly found to be ineffective or unsafe when
deployed in clinical pathways. Predictive performance
may be diminished when translated to demographically
and culturally distinct populations, or when deployed
using electronic health data with differing characteristics.
Differences in how healthcare resources are used in local
settings, alongside inherent biases inlaid within such tech-
nologies, may result in varying clinical effectiveness from
inconsistent intervention thresholds, variation in the
physical clinical interventions that are deployed, to soci-
otechnical variation across end-users and processes.'*>’
Resultantly, where an algorithm is deployed into an
untested context without real-world evidence for a
comparable integrated pathway, there are risks to both
patient safety and exacerbation of healthcare inequalities
through a lack of fairness in prediction or intervention
allocation.

With extensive integration of risk stratification into
pathways within primary care systems worldwide it is of
paramount importance to establish the current evidence
base on which these care-defining interventions can be
appraised. We therefore systematically review the available
literature concerning risk stratification tools for predicting
future healthcare utilisation in primary care populations.

We present three aims: (1) to update existing evidence
for algorithmic solutions with attention paid to predic-
tive performance and risk of bias in dataset evaluation, as
well as real-world clinical outcomes; (2) to describe the
transfer of algorithms from initial development to testing
and deployment in different global contexts and (3) to
evaluate risks in cross-context transfer and application.
Based on our findings, we provide recommendations for
the responsible evaluation and deployment of predictive
risk stratification tools.

METHODS

Search strategy

A systematic search of the MEDLINE, Embase and Global
Health databases was carried out on 18 July 2023 via
the Ovid platform. PRISMA guidelines were followed
throughout the conduct and reporting of this review.”!
A combination of keywords and MeSH terms was used to
curate relevant literature, details of which are available in
online supplemental material.

Inclusion and exclusion criteria

We defined our inclusion criteria using the Population,
Intervention, Control and Outcome method. The popu-
lation of our analysis was selected to be comparable to
the populations in which these models are currently in
use. We therefore included only papers that applied algo-
rithms to unselected primary care populations, where
deployment was to the entire patient population for a
given organisation without selection of particular groups.
Prestratified populations, such as specific disease groups,
or groups previously identified as high risk for health-
care utilisation, were excluded. Age-stratified populations
were permitted as this is a pragmatic selection criterion
adopted by the majority of predictive modelling work.
Publications applying algorithms to historic research
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study datasets or specifically designed questionnaires (ie,
not routinely collected or ‘real-world data’®®) were also
excluded.

Our intervention was defined as the application of a
risk stratification model to an appropriate population
in the process of derivation or validation, or to perform
case selection as part of a PHM strategy. Models reliant
on non-routinely collected data, such as questionnaire
results, were excluded.

Outcomes included measures of predictive perfor-
mance across five main categories: access to primary
care services; emergency department attendance; health-
care costs; hospital admissions and readmission. Studies
examining risk of readmission were included provided
that the study population was not limited to patients with
a recent admission. A group formed of those who had
recently been admitted would, by definition, no longer be
considered unselected and would thus violate our popu-
lation criteria. Composite (eg, admissions and mortality
as a single endpoint) and component (eg, respiratory
admissions instead of total admissions) outcomes were
excluded. We also considered clinical impact assessments
related to a real-world evaluation.

Study selection and quality appraisal

Titles and abstracts were screened by two reviewers
(CO/]JZ) according to the criteria set out above, with all
conflicts decided by a third (JM). Eligible publications
were read in full and assessed for exclusions not apparent
in the title or abstract, and for methodological quality.”
Risk of bias was assessed using the Prediction model Risk
Of Bias ASsessment Tool.**

Data extraction

We extracted information regarding model characteris-
tics, study design and context, predictive performance,
and measures of clinical impact from any associated
intervention where evaluation took place in a real-world
setting. Due to significant heterogeneity in study design
and reporting a meta-analysis was not conducted. C-statis-
tics were used as the primary outcome for model perfor-
mance. A subset of papers did not report discrimination,
but instead reported goodness of fit using coefficient of
determination (R?) which were extracted where available.
Impact evaluations were described using the terminology
and significance testing employed in the original paper,
commonly expressed as the absolute difference (AD)
between groups or odds ratios (OR).

Model appraisal

Models that appeared in multiple studies were quali-
tatively appraised by comparing their derivation meth-
odology to subsequent external validation or clinical
evaluation studies. For each model we report: the context
of'its original development; contexts in which the model’s
predictive performance has been tested; and contexts in
which the model’s real-world impacts have been assessed.
Results were synthesised separately as the outcome of

[ Identification of studies via databases and registers ]

]

Records removed before screening:
Duplicate records removed (n = 1751)
Records marked as ineligible by
automation tools (n = 0)
Records removed for other reasons (n = 0)

Records identified from*:
Databases (n = 5648) >
Registers (n = 0)

l

Records screened
(n =3897)

Reports sought for retrieval )
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|
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[
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5 Studies included in review
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S Reports of included studies
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Figure 2 A PRISMA flow diagram showing the process of
study selection for our analysis. PRISMA, Preferred Reporting
Items for Systematic Reviews and Meta-Analyses.

either internal or external validation. Internal validation
was defined as any measure of predictive performance
within the same population in which the model was
derived, and external as any validation using data from a
separate population.

RESULTS

Systematic review

Our review identified 3897 publications eligible for
screening after duplicates were removed (figure 2). Of
these, 3636 were excluded on the basis of their title or
abstract alone leaving 261 that were sought for retrieval.
Full texts could not be retrieved for 10 publications,
thus 251 were reviewed in full. A total of 51 publications
met our criteria and were included in our final analysis
(online supplemental table 1).%7 Further detail about
the identified models, along with our risk of bias analysis,
can be found in online supplemental materials.

The majority of studies were based in the USA (23), with
the remainder set in the UK (10), Spain (9), Canada (2),
Italy (2), New Zealand (2), Australia (1), Ireland (1) and
Israel (1). Population sizes ranged from 96 to 5.4 million
with a median value of 94 264 (IQR 12 800-434 027).
Hospital admission was the most commonly predicted
outcome (34), followed by healthcare costs (14), emer-
gency department attendance (9), access to primary care
services (8), mortality (5) and readmission (2).

19 studies reported the derivation and internal vali-
dation of a risk stratification model with 32 describing
validation of a model in a separate population dataset.
10 studies reported the results of implementing PHM
measures based on case selection by a risk stratification
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model in a real-world clinical pathway. These included
five randomised control trials (RCTs), three prospective
cohort studies and two retrospective cohort studies. PHM
strategies used were case management (8), telemoni-
toring (4) and care coordination (3).

We identified 28 risk stratification tools across all
studies. 42 studies examined a single model, whereas 9
studied the comparative efficacy of several models. Johns-
Hopkins ACG was the most studied algorithm (20),
followed by the Charlson Comorbidity Index (10), Hier-
archical Condition Categories (8), the Chronic Illness
and Disability Payment System (3), RxRisk (3), the Elder
Risk Assessment Index (2), the Patients At Risk of Rehos-
pitalisation algorithm (2) and QAdmissions (2). Of the
remainder, four were proprietary ML algorithms.

Results of internal and external validation studies

A summary of the derivation characteristics of each of
the 28 discovered models is compared with the results
of subsequent validation studies in online supplemental
table 2. The results of internal validation studies
echoed previous reviews with Cstatistics for various
outcomes ranging from 0.67 to 0.90. Notably, three of the
highest C-statistics within internal validation samples were
displayed by models derived using ML techniques—0.84,%
0.85" and 0.90.”

Half (14) of the discovered models underwent external
validation. Of these, only the Charlson Comorbidity
Index and the Johns Hopkins ACG System were validated
internationally. Model performance in external validation
studies generally resembled internal validation perfor-
mance for each model, with C-statistics ranging from 0.53
to 0.88. Accounting for heterogeneity in study design and
reporting, there was no evident association between vali-
dation context and model discrimination, with models
broadly displaying consistent predictive performance
when transported to external datasets.

Results of real-world evaluation studies

Two studies reported the implementation of risk strati-
fication tools into care pathways within the same popu-
lation used for development. The Nairn Case Finder”
and the Predictive RIsk Stratification Model (PRISM)®
algorithms were used to identify those that might benefit
from case management, both in the hope of reducing
hospital admissions. In a prospective stepped-wedge clin-
ical trial conducted across more than 230 000 patients
in 32 primary care practices, the practice resource allo-
cation intervention linked to PRISM resulted in signifi-
cantly increased hospital admissions (OR 1.44 (95% CI
1.39 to 1.50), p<0.001), as well as increased emergency
presentations, time in hospital, and primary care work-
load. The intervention guided by the Nairn Case Finder
significantly reduced hospital admissions (AD=42.5%,
p=0.002) in a population of 96 high-risk patients from a
single locality, when matched 1:1 on risk score to patients
in a separate control population.

Eight of the discovered models were deployed as tools
for case selection as part of a PHM strategy in a separate
context from development. The Johns Hopkins ACG
System was deployed in two separate studies, whereas each
of the other models was deployed only once. Healthcare
utilisation measures were not significantly influenced
by interventions guided by the Hierarchical Condition
Category”" and PacifiCare’s Medicare Risk Programme®
models. Similarly equivocal evidence for the efficacy of
interventions linked with the Johns Hopkins ACG System
was observed, with one study showing no benefit” and
the other demonstrating benefit in groups selected by the
model (OR 0.91 (95% CI 0.86 to 0.96)) but reciprocal
harm in non-prioritised groups (OR 1.19 (95% CI 1.09 to
1.30)).% Interventions linked with the Elder Risk Assess-
ment Index™ and QAdmissions* algorithms led to signif-
icant increases in mortality (AD 10.8%, p=0.008) and
hospital admissions (difference in difference 79.8 (95%
CI 21.2 to 138.4), p=0.01), respectively.

Significant reductions in hospital admissions were
achieved through interventions guided by the combined
predictive model (AD=-0.9, p<0.001),” Patients At Risk
for Rehospitalisation algorithm (AD=-0.3, p<0.001)™
and SCAN Health Plan Model (AD=11.5%, p=0.02).”'
Figure 3 summarises the main findings of this review,
describing only the models that underwent external vali-
dation or real-world evaluation.

DISCUSSION

Main results

Our review identifies 28 risk stratification tools designed
to predict healthcare utilisation in an unselected primary
care population. The discriminatory ability of half of the
discovered models was validated in an external cohort.
However, only two, the Charlson Comorbidity Index and
Johns Hopkins ACG System, were validated in a different
country from their derivation dataset. No evident associ-
ation between validation context and model discrimina-
tion was observed. Models derived using ML techniques
displayed the best predictive performance, however, none
of these models underwent external validation.

The results of real-world evaluation studies present
equivocal evidence for the efficacy of these population-
level interventions. The majority of publications reported
no change, or indeed significant increases, in health-
care utilisation within groups targeted by the interven-
tion, with only one-third of reports demonstrating some
benefit.

Comparison with the literature

We corroborate the results of previous reviews by observing
that the discriminatory power of a variety of risk strati-
fication tools is robust to external validation.' * '* > We
add that the context of model validation appears to have
minimal impact on predictive performance and highlight
a scarcity of literature appraising the impact of deploying
these models to guide PHM strategies despite extensive
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integration of risk stratification into pathways within
primary care systems worldwide.”™

Our finding that deployment of these models is not
consistently associated with reductions in healthcare util-
isation is perhaps unsurprising. PHM strategies applied
to unselected primary care cohorts, with case selection
achieved through a variety of different means, have
frequently been shown to increase costs without an asso-
ciated reduction in morbidity.” ¥*7 A single 2014 meta-
analysis, aggregating a heterogeneous group of strategies
as a single intervention, demonstrated marginal reduc-
tions in resource use within a relevant cohort.® However,
these findings were subject to substantial heterogeneity
(I>=58%-85%) and, while ostensibly the target popu-
lation of this analysis was patients generally at high risk
of healthcare resource use, the majority of included
studies reported interventions targeted at specific disease
cohorts. There is broad consensus that PHM strategies
designed specifically for those with certain chronic condi-
tions significantly reduce morbidity.*"** Taken with our
findings, the available evidence indicates that the success
of PHM strategies in specific disease groups may not be
generalisable to unselected cohorts, and this remains the
case when predictive modelling is employed to augment
case selection.

The findings of our analysis of peerreviewed litera-
ture stand in stark contrast to the impact statements of
commercial suppliers of care systems that employ risk
stratification. One such statement compared resource use
statistics of product users to standardised national trends
in an unadjusted analysis finding significant reductions
in every parameter."”” However, as is expressly the case for
statements within product literature, a lack of transpar-
ency relating to the methods of data collection and anal-
ysis makes verifying these claims impossible.

Interpretation
We propose that the discouraging results of studies
deploying risk stratification tools to guide PHM strate-
gies primarily result from a mismatch between theoret-
ical model development and complexities of real-world
pathways. Risk stratifying patients by their likelihood of
resource use alone almost invariably leads to the creation
of a diverse intervention cohort, where individual clin-
ical need is likely to be heterogeneous. This is likely the
reason that population-level interventions have failed to
replicate the results of successful programmes targeting
specific chronic conditions. Presently, there is a paucity
of evidence to guide best practice once high-risk users
are identified, and no recommendations can be made
about the efficacy of any single intervention over another.
Results of real-world evaluation studies, therefore, present
a cautionary tale of designing clinical pathways based on
the principle of simply flagging high-risk patients without
a concrete understanding of how this translates into
practice.

We did not observe an effect of validation context on
algorithmic performance. This is most likely due to the low

number of comparable values obtained for each model,
the heterogeneity of the study design, and a predictably
small absolute effect size. Diminished performance when
algorithms are deployed in new environments is a highly
replicable finding, and our results should not be inter-
preted to contradict this established premise. However,
this finding does imply that poor predictive performance
is unlikely to be the primary reason for the failure of these
algorithms to produce consistent results.

Limitations

It is important to put these findings within the context
of our methodological constraints. Primarily, our analysis
was limited by the heterogeneity of the included studies.
Model performance was variably reported in terms of C-sta-
tistics and R® values which cannot be directly compared.
Real-world evaluation studies suffered from a lack of
uniformity of intervention as many reported the results
of a bespoke system designed by the study authors. This
prevented direct comparison of the efficacy of particular
intervention categories within our study cohort as their
results could not be appropriately aggregated. While our
analysis identified several models with sufficient diversity
of validation to demonstrate robust performance in a
variety of contexts, this sample was small, and no strong
conclusions can be drawn about the scale of algorithmic
drift when such models are transported to new datasets.
Finally, the majority of included publications were obser-
vational or cohort studies, with only a small number of
RCTs identified.

Implications
The integration of risk stratification into pathways that
define care decisions for millions of individuals around
the world is already well established. Our findings suggest
an absence of clinical impact, and indeed a signal of harm
in a third of cases, raising several important consider-
ations. First, this presents clear implications for patient
safety, particularly in the absence of regular independent
appraisal of the personal and system-wide effects. In addi-
tion to aggregate population health impacts, this includes
the impact on individuals of incorrect stratification, and
of negative biases through poorly calibrated algorithms.
Second, the effects on provider workload of instituting
and enacting these often time-consuming PHM interven-
tions must be considered in the calculation of risk versus
benefit. Finally, the absence of established benefits calls
into question the cost-effectiveness of these programmes,
particularly when used in healthcare systems where
resources are constrained.
We therefore propose the following recommendations:
1. Deployment of individual-level risk prediction, with
impact on clinical care pathways, must be subject to
the same controls as other medical technologies. This
would require matching their use to a responsible life-
cycle of evidence generation, impact evaluation and
monitoring for negative consequences. Such a lifecy-
cle should include pre hoc evaluation, in the form of
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local testing, and controlled trials for integrated path-
ways, as well as post hoc analyses of economic impact
and healthcare outcomes in targeted and non-targeted
groups. The first step in this process may be agree-
ment on an auditable validation framework, such as BS
30440 developed by the British Standards Institution,
to permit a more systematic approach to evaluation of
such products.

2. National bodies involved in the procurement of com-
mercial risk stratification services must review the cost-
effectiveness and systemic implications of adjusting the
likelihood of individuals within the population they
serve accessing care based on personal predicted risk.

3. Regulatory bodies, including the Medicines and
Healthcare products Regulatory Agency and the US
Food and Drug Administration, must either confirm
that risk stratification algorithms fall within their pur-
view and are thus subject to the same regulation as
other technologies defined as a ‘Software as a Medical
Device’, or clarify why these algorithms do not fall into
this category.

CONCLUSION

While model performance appears to generalise in most
evaluations, there is little evidence to suggest that the
identification of high-risk individuals can be translated
to improvements in service delivery or morbidity. The
available evidence does not support further integration
of these types of risk prediction into population health-
care pathways. There is an urgent need to independently
appraise the safety, efficacy and cost-effectiveness of risk
prediction systems that are already widely deployed within
primary care.
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