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ABSTRACT
Objectives  Risk stratification tools that predict healthcare 
utilisation are extensively integrated into primary 
care systems worldwide, forming a key component of 
anticipatory care pathways, where high-risk individuals 
are targeted by preventative interventions. Existing work 
broadly focuses on comparing model performance in 
retrospective cohorts with little attention paid to efficacy 
in reducing morbidity when deployed in different global 
contexts. We review the evidence supporting the use 
of such tools in real-world settings, from retrospective 
dataset performance to pathway evaluation.
Methods  A systematic search was undertaken to 
identify studies reporting the development, validation and 
deployment of models that predict healthcare utilisation 
in unselected primary care cohorts, comparable to their 
current real-world application.
Results  Among 3897 articles screened, 51 studies 
were identified evaluating 28 risk prediction models. Half 
underwent external validation yet only two were validated 
internationally. No association between validation context 
and model discrimination was observed. The majority 
of real-world evaluation studies reported no change, or 
indeed significant increases, in healthcare utilisation 
within targeted groups, with only one-third of reports 
demonstrating some benefit.
Discussion  While model discrimination appears 
satisfactorily robust to application context there is little 
evidence to suggest that accurate identification of high-
risk individuals can be reliably translated to improvements 
in service delivery or morbidity.
Conclusions  The evidence does not support further 
integration of care pathways with costly population-level 
interventions based on risk prediction in unselected 
primary care cohorts. There is an urgent need to 
independently appraise the safety, efficacy and cost-
effectiveness of risk prediction systems that are already 
widely deployed within primary care.

INTRODUCTION
Risk stratification tools that predict health-
care resource use are widely used in primary 
care settings.1–6 These tools are integral to 
population health management (PHM) 
strategies around the world, enabled by the 
availability of routinely collected data from 

sources such as electronic health records.7 
Risk stratification tools typically use predic-
tive models that are developed through statis-
tical or machine learning (ML) techniques, 
to generate an individual risk score for some 
measure of resource use. These scores form 
a key component of anticipatory care path-
ways, where those at the highest risk may be 
targeted for specific interventions aimed at 
reducing future morbidity.8–11 The process 
by which these tools are ideally developed 
and deployed within healthcare systems is 
summarised in figure 1.

A growing body of literature describes 
the development and validation of risk 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Risk prediction models that stratify primary care 
populations according to their likelihood of access-
ing healthcare resources are generally considered 
to perform well within similar contexts to those in 
which they were derived. It is unclear how they per-
form when deployed in wider global contexts and in-
deed if their application can be harnessed to reduce 
resource demands.

WHAT THIS STUDY ADDS
	⇒ We find that most models have not been studied 
in a sufficient diversity of contexts to appraise the 
robustness of prediction, however, those that have 
appear to retain their discriminatory ability. The 
real-world application of these models to reduce 
healthcare resource use in unselected cohorts 
has produced disappointing results, with an equal 
weight of evidence suggesting a harmful effect as a 
beneficial one in this context.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ Our results call into question the common, and 
costly, practice of commissioning population health 
management strategies based on risk stratification 
of whole primary care populations without a con-
crete understanding of the associated risks.
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stratification tools in the primary care setting reporting 
an acceptable discriminatory power for the majority of 
models.1 2 12 13 However, existing work broadly focuses 
on the assessment of model performance within retro-
spective datasets, with little attention paid to their effi-
cacy in real-world settings, where the clinical impacts 
of deploying these algorithms within a population are 
assessed. Commercial literature asserts the efficacy of 
interventions based on algorithmic case selection in 
improving key outcomes, such as hospital admission 
rates, but suffers from a lack of transparency in data and 
methodology.14 15

Predictive models that appear accurate in development 
are increasingly found to be ineffective or unsafe when 
deployed in clinical pathways. Predictive performance 
may be diminished when translated to demographically 
and culturally distinct populations, or when deployed 
using electronic health data with differing characteristics. 
Differences in how healthcare resources are used in local 
settings, alongside inherent biases inlaid within such tech-
nologies, may result in varying clinical effectiveness from 
inconsistent intervention thresholds, variation in the 
physical clinical interventions that are deployed, to soci-
otechnical variation across end-users and processes.16–20 
Resultantly, where an algorithm is deployed into an 
untested context without real-world evidence for a 
comparable integrated pathway, there are risks to both 
patient safety and exacerbation of healthcare inequalities 
through a lack of fairness in prediction or intervention 
allocation.

With extensive integration of risk stratification into 
pathways within primary care systems worldwide it is of 
paramount importance to establish the current evidence 
base on which these care-defining interventions can be 
appraised. We therefore systematically review the available 
literature concerning risk stratification tools for predicting 
future healthcare utilisation in primary care populations. 

We present three aims: (1) to update existing evidence 
for algorithmic solutions with attention paid to predic-
tive performance and risk of bias in dataset evaluation, as 
well as real-world clinical outcomes; (2) to describe the 
transfer of algorithms from initial development to testing 
and deployment in different global contexts and (3) to 
evaluate risks in cross-context transfer and application. 
Based on our findings, we provide recommendations for 
the responsible evaluation and deployment of predictive 
risk stratification tools.

METHODS
Search strategy
A systematic search of the MEDLINE, Embase and Global 
Health databases was carried out on 18 July 2023 via 
the Ovid platform. PRISMA guidelines were followed 
throughout the conduct and reporting of this review.21 
A combination of keywords and MeSH terms was used to 
curate relevant literature, details of which are available in 
online supplemental material.

Inclusion and exclusion criteria
We defined our inclusion criteria using the Population, 
Intervention, Control and Outcome method. The popu-
lation of our analysis was selected to be comparable to 
the populations in which these models are currently in 
use. We therefore included only papers that applied algo-
rithms to unselected primary care populations, where 
deployment was to the entire patient population for a 
given organisation without selection of particular groups. 
Prestratified populations, such as specific disease groups, 
or groups previously identified as high risk for health-
care utilisation, were excluded. Age-stratified populations 
were permitted as this is a pragmatic selection criterion 
adopted by the majority of predictive modelling work. 
Publications applying algorithms to historic research 

Figure 1  An infographic describing an idealised process for developing and deploying a risk prediction tool within a healthcare 
system. In black is the deployment cycle, linking risk prediction tools and their associated population health management 
measures to a lifecycle of evidence generation, impact evaluation and monitoring for negative consequences that are fed back 
into the model and intervention.
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study datasets or specifically designed questionnaires (ie, 
not routinely collected or ‘real-world data’22) were also 
excluded.

Our intervention was defined as the application of a 
risk stratification model to an appropriate population 
in the process of derivation or validation, or to perform 
case selection as part of a PHM strategy. Models reliant 
on non-routinely collected data, such as questionnaire 
results, were excluded.

Outcomes included measures of predictive perfor-
mance across five main categories: access to primary 
care services; emergency department attendance; health-
care costs; hospital admissions and readmission. Studies 
examining risk of readmission were included provided 
that the study population was not limited to patients with 
a recent admission. A group formed of those who had 
recently been admitted would, by definition, no longer be 
considered unselected and would thus violate our popu-
lation criteria. Composite (eg, admissions and mortality 
as a single endpoint) and component (eg, respiratory 
admissions instead of total admissions) outcomes were 
excluded. We also considered clinical impact assessments 
related to a real-world evaluation.

Study selection and quality appraisal
Titles and abstracts were screened by two reviewers 
(CO/JZ) according to the criteria set out above, with all 
conflicts decided by a third (JM). Eligible publications 
were read in full and assessed for exclusions not apparent 
in the title or abstract, and for methodological quality.23 
Risk of bias was assessed using the Prediction model Risk 
Of Bias ASsessment Tool.24

Data extraction
We extracted information regarding model characteris-
tics, study design and context, predictive performance, 
and measures of clinical impact from any associated 
intervention where evaluation took place in a real-world 
setting. Due to significant heterogeneity in study design 
and reporting a meta-analysis was not conducted. C-statis-
tics were used as the primary outcome for model perfor-
mance. A subset of papers did not report discrimination, 
but instead reported goodness of fit using coefficient of 
determination (R2) which were extracted where available. 
Impact evaluations were described using the terminology 
and significance testing employed in the original paper, 
commonly expressed as the absolute difference (AD) 
between groups or odds ratios (OR).

Model appraisal
Models that appeared in multiple studies were quali-
tatively appraised by comparing their derivation meth-
odology to subsequent external validation or clinical 
evaluation studies. For each model we report: the context 
of its original development; contexts in which the model’s 
predictive performance has been tested; and contexts in 
which the model’s real-world impacts have been assessed. 
Results were synthesised separately as the outcome of 

either internal or external validation. Internal validation 
was defined as any measure of predictive performance 
within the same population in which the model was 
derived, and external as any validation using data from a 
separate population.

RESULTS
Systematic review
Our review identified 3897 publications eligible for 
screening after duplicates were removed (figure  2). Of 
these, 3636 were excluded on the basis of their title or 
abstract alone leaving 261 that were sought for retrieval. 
Full texts could not be retrieved for 10 publications, 
thus 251 were reviewed in full. A total of 51 publications 
met our criteria and were included in our final analysis 
(online supplemental table 1).25–75 Further detail about 
the identified models, along with our risk of bias analysis, 
can be found in online supplemental materials.

The majority of studies were based in the USA (23), with 
the remainder set in the UK (10), Spain (9), Canada (2), 
Italy (2), New Zealand (2), Australia (1), Ireland (1) and 
Israel (1). Population sizes ranged from 96 to 5.4 million 
with a median value of 94 264 (IQR 12 800–434 027). 
Hospital admission was the most commonly predicted 
outcome (34), followed by healthcare costs (14), emer-
gency department attendance (9), access to primary care 
services (8), mortality (5) and readmission (2).

19 studies reported the derivation and internal vali-
dation of a risk stratification model with 32 describing 
validation of a model in a separate population dataset. 
10 studies reported the results of implementing PHM 
measures based on case selection by a risk stratification 

Figure 2  A PRISMA flow diagram showing the process of 
study selection for our analysis. PRISMA, Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses.
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model in a real-world clinical pathway. These included 
five randomised control trials (RCTs), three prospective 
cohort studies and two retrospective cohort studies. PHM 
strategies used were case management (8), telemoni-
toring (4) and care coordination (3).

We identified 28 risk stratification tools across all 
studies. 42 studies examined a single model, whereas 9 
studied the comparative efficacy of several models. Johns-
Hopkins ACG was the most studied algorithm (20), 
followed by the Charlson Comorbidity Index (10), Hier-
archical Condition Categories (8), the Chronic Illness 
and Disability Payment System (3), RxRisk (3), the Elder 
Risk Assessment Index (2), the Patients At Risk of Rehos-
pitalisation algorithm (2) and QAdmissions (2). Of the 
remainder, four were proprietary ML algorithms.

Results of internal and external validation studies
A summary of the derivation characteristics of each of 
the 28 discovered models is compared with the results 
of subsequent validation studies in online supplemental 
table 2.25–84 The results of internal validation studies 
echoed previous reviews with C-statistics for various 
outcomes ranging from 0.67 to 0.90. Notably, three of the 
highest C-statistics within internal validation samples were 
displayed by models derived using ML techniques—0.84,67 
0.8542 and 0.90.55

Half (14) of the discovered models underwent external 
validation. Of these, only the Charlson Comorbidity 
Index and the Johns Hopkins ACG System were validated 
internationally. Model performance in external validation 
studies generally resembled internal validation perfor-
mance for each model, with C-statistics ranging from 0.53 
to 0.88. Accounting for heterogeneity in study design and 
reporting, there was no evident association between vali-
dation context and model discrimination, with models 
broadly displaying consistent predictive performance 
when transported to external datasets.

Results of real-world evaluation studies
Two studies reported the implementation of risk strati-
fication tools into care pathways within the same popu-
lation used for development. The Nairn Case Finder73 
and the Predictive RIsk Stratification Model (PRISM)25 
algorithms were used to identify those that might benefit 
from case management, both in the hope of reducing 
hospital admissions. In a prospective stepped-wedge clin-
ical trial conducted across more than 230 000 patients 
in 32 primary care practices, the practice resource allo-
cation intervention linked to PRISM resulted in signifi-
cantly increased hospital admissions (OR 1.44 (95% CI 
1.39 to 1.50), p<0.001), as well as increased emergency 
presentations, time in hospital, and primary care work-
load. The intervention guided by the Nairn Case Finder 
significantly reduced hospital admissions (AD=42.5%, 
p=0.002) in a population of 96 high-risk patients from a 
single locality, when matched 1:1 on risk score to patients 
in a separate control population.

Eight of the discovered models were deployed as tools 
for case selection as part of a PHM strategy in a separate 
context from development. The Johns Hopkins ACG 
System was deployed in two separate studies, whereas each 
of the other models was deployed only once. Healthcare 
utilisation measures were not significantly influenced 
by interventions guided by the Hierarchical Condition 
Category71 and PacifiCare’s Medicare Risk Programme37 
models. Similarly equivocal evidence for the efficacy of 
interventions linked with the Johns Hopkins ACG System 
was observed, with one study showing no benefit31 and 
the other demonstrating benefit in groups selected by the 
model (OR 0.91 (95% CI 0.86 to 0.96)) but reciprocal 
harm in non-prioritised groups (OR 1.19 (95% CI 1.09 to 
1.30)).32 Interventions linked with the Elder Risk Assess-
ment Index30 and QAdmissions48 algorithms led to signif-
icant increases in mortality (AD 10.8%, p=0.008) and 
hospital admissions (difference in difference 79.8 (95% 
CI 21.2 to 138.4), p=0.01), respectively.

Significant reductions in hospital admissions were 
achieved through interventions guided by the combined 
predictive model (AD=−0.9, p<0.001),39 Patients At Risk 
for Rehospitalisation algorithm (AD=−0.3, p<0.001)39 
and SCAN Health Plan Model (AD=11.5%, p=0.02).51 
Figure  3 summarises the main findings of this review, 
describing only the models that underwent external vali-
dation or real-world evaluation.

DISCUSSION
Main results
Our review identifies 28 risk stratification tools designed 
to predict healthcare utilisation in an unselected primary 
care population. The discriminatory ability of half of the 
discovered models was validated in an external cohort. 
However, only two, the Charlson Comorbidity Index and 
Johns Hopkins ACG System, were validated in a different 
country from their derivation dataset. No evident associ-
ation between validation context and model discrimina-
tion was observed. Models derived using ML techniques 
displayed the best predictive performance, however, none 
of these models underwent external validation.

The results of real-world evaluation studies present 
equivocal evidence for the efficacy of these population-
level interventions. The majority of publications reported 
no change, or indeed significant increases, in health-
care utilisation within groups targeted by the interven-
tion, with only one-third of reports demonstrating some 
benefit.

Comparison with the literature
We corroborate the results of previous reviews by observing 
that the discriminatory power of a variety of risk strati-
fication tools is robust to external validation.1 2 12 13 We 
add that the context of model validation appears to have 
minimal impact on predictive performance and highlight 
a scarcity of literature appraising the impact of deploying 
these models to guide PHM strategies despite extensive 
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Figure 3  An infographic summarising the validation characteristics of the identified models that underwent external validation 
or real-world testing. Models that underwent more extensive validation processes are represented by larger boxes. Each box 
contains aggregated data for all of the external validation and real-world evaluation studies for each model. Validation countries 
are represented by flags with the number of studies based in each country overlying. R2 and C-statistics are displayed as 
ranges for all of the outcome measures tested for each model for illustrative purposes only. A&E, accident and emergency 
department; PPV, positive predictive value; RCT, randomised controlled trial; RR, risk ratio.
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integration of risk stratification into pathways within 
primary care systems worldwide.3–6

Our finding that deployment of these models is not 
consistently associated with reductions in healthcare util-
isation is perhaps unsurprising. PHM strategies applied 
to unselected primary care cohorts, with case selection 
achieved through a variety of different means, have 
frequently been shown to increase costs without an asso-
ciated reduction in morbidity.9 85–87 A single 2014 meta-
analysis, aggregating a heterogeneous group of strategies 
as a single intervention, demonstrated marginal reduc-
tions in resource use within a relevant cohort.88 However, 
these findings were subject to substantial heterogeneity 
(I²=58%–85%) and, while ostensibly the target popu-
lation of this analysis was patients generally at high risk 
of healthcare resource use, the majority of included 
studies reported interventions targeted at specific disease 
cohorts. There is broad consensus that PHM strategies 
designed specifically for those with certain chronic condi-
tions significantly reduce morbidity.89–94 Taken with our 
findings, the available evidence indicates that the success 
of PHM strategies in specific disease groups may not be 
generalisable to unselected cohorts, and this remains the 
case when predictive modelling is employed to augment 
case selection.

The findings of our analysis of peer-reviewed litera-
ture stand in stark contrast to the impact statements of 
commercial suppliers of care systems that employ risk 
stratification. One such statement compared resource use 
statistics of product users to standardised national trends 
in an unadjusted analysis finding significant reductions 
in every parameter.15 However, as is expressly the case for 
statements within product literature, a lack of transpar-
ency relating to the methods of data collection and anal-
ysis makes verifying these claims impossible.

Interpretation
We propose that the discouraging results of studies 
deploying risk stratification tools to guide PHM strate-
gies primarily result from a mismatch between theoret-
ical model development and complexities of real-world 
pathways. Risk stratifying patients by their likelihood of 
resource use alone almost invariably leads to the creation 
of a diverse intervention cohort, where individual clin-
ical need is likely to be heterogeneous. This is likely the 
reason that population-level interventions have failed to 
replicate the results of successful programmes targeting 
specific chronic conditions. Presently, there is a paucity 
of evidence to guide best practice once high-risk users 
are identified, and no recommendations can be made 
about the efficacy of any single intervention over another. 
Results of real-world evaluation studies, therefore, present 
a cautionary tale of designing clinical pathways based on 
the principle of simply flagging high-risk patients without 
a concrete understanding of how this translates into 
practice.

We did not observe an effect of validation context on 
algorithmic performance. This is most likely due to the low 

number of comparable values obtained for each model, 
the heterogeneity of the study design, and a predictably 
small absolute effect size. Diminished performance when 
algorithms are deployed in new environments is a highly 
replicable finding, and our results should not be inter-
preted to contradict this established premise. However, 
this finding does imply that poor predictive performance 
is unlikely to be the primary reason for the failure of these 
algorithms to produce consistent results.

Limitations
It is important to put these findings within the context 
of our methodological constraints. Primarily, our analysis 
was limited by the heterogeneity of the included studies. 
Model performance was variably reported in terms of C-sta-
tistics and R2 values which cannot be directly compared. 
Real-world evaluation studies suffered from a lack of 
uniformity of intervention as many reported the results 
of a bespoke system designed by the study authors. This 
prevented direct comparison of the efficacy of particular 
intervention categories within our study cohort as their 
results could not be appropriately aggregated. While our 
analysis identified several models with sufficient diversity 
of validation to demonstrate robust performance in a 
variety of contexts, this sample was small, and no strong 
conclusions can be drawn about the scale of algorithmic 
drift when such models are transported to new datasets. 
Finally, the majority of included publications were obser-
vational or cohort studies, with only a small number of 
RCTs identified.

Implications
The integration of risk stratification into pathways that 
define care decisions for millions of individuals around 
the world is already well established. Our findings suggest 
an absence of clinical impact, and indeed a signal of harm 
in a third of cases, raising several important consider-
ations. First, this presents clear implications for patient 
safety, particularly in the absence of regular independent 
appraisal of the personal and system-wide effects. In addi-
tion to aggregate population health impacts, this includes 
the impact on individuals of incorrect stratification, and 
of negative biases through poorly calibrated algorithms. 
Second, the effects on provider workload of instituting 
and enacting these often time-consuming PHM interven-
tions must be considered in the calculation of risk versus 
benefit. Finally, the absence of established benefits calls 
into question the cost-effectiveness of these programmes, 
particularly when used in healthcare systems where 
resources are constrained.

We therefore propose the following recommendations:
1.	 Deployment of individual-level risk prediction, with 

impact on clinical care pathways, must be subject to 
the same controls as other medical technologies. This 
would require matching their use to a responsible life-
cycle of evidence generation, impact evaluation and 
monitoring for negative consequences. Such a lifecy-
cle should include pre hoc evaluation, in the form of 
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local testing, and controlled trials for integrated path-
ways, as well as post hoc analyses of economic impact 
and healthcare outcomes in targeted and non-targeted 
groups. The first step in this process may be agree-
ment on an auditable validation framework, such as BS 
30440 developed by the British Standards Institution, 
to permit a more systematic approach to evaluation of 
such products.

2.	 National bodies involved in the procurement of com-
mercial risk stratification services must review the cost-
effectiveness and systemic implications of adjusting the 
likelihood of individuals within the population they 
serve accessing care based on personal predicted risk.

3.	 Regulatory bodies, including the Medicines and 
Healthcare products Regulatory Agency and the US 
Food and Drug Administration, must either confirm 
that risk stratification algorithms fall within their pur-
view and are thus subject to the same regulation as 
other technologies defined as a ‘Software as a Medical 
Device’, or clarify why these algorithms do not fall into 
this category.

CONCLUSION
While model performance appears to generalise in most 
evaluations, there is little evidence to suggest that the 
identification of high-risk individuals can be translated 
to improvements in service delivery or morbidity. The 
available evidence does not support further integration 
of these types of risk prediction into population health-
care pathways. There is an urgent need to independently 
appraise the safety, efficacy and cost-effectiveness of risk 
prediction systems that are already widely deployed within 
primary care.

X Christopher Oddy @_chrisoddy_
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