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Clinical decision-making is one of the most impactful parts of a physician’s
responsibilities and stands to benefit greatly from artificial intelligence
solutions and large language models (LLMs) in particular. However, while
LLMs have achieved excellent performance on medical licensing exams,
these tests fail to assess many skills necessary for deploymentin arealistic
clinical decision-making environment, including gathering information,
adhering to guidelines, and integrating into clinical workflows. Here we
have created a curated dataset based on the Medical Information Mart for
Intensive Care database spanning 2,400 real patient cases and four common
abdominal pathologies as well as aframework to simulate a realistic clinical
setting. We show that current state-of-the-art LLMs do not accurately
diagnose patients across all pathologies (performing significantly worse
than physicians), follow neither diagnostic nor treatment guidelines,

and cannotinterpretlaboratory results, thus posing a serious risk to the
health of patients. Furthermore, we move beyond diagnostic accuracy and
demonstrate that they cannot be easily integrated into existing workflows
because they often fail to follow instructions and are sensitive to both the
quantity and order of information. Overall, our analysis reveals that LLMs
are currently not ready for autonomous clinical decision-making while
providing a dataset and framework to guide future studies.

Large language models (LLMs) have the potential to revolutionize our
medical system' having shown their capabilities on diverse tasks* ™.
Importantly, ashumans primarily interact with the world through lan-
guage, LLMs are poised to be the point of access to the multimodal
medical artificial intelligence (Al) solutions of the future™. Until now,
however, the diagnostic capabilities of models have been tested in
structurally simple medical contexts, such as canonical vignettes of
hypothetical patients or clinical case challenges. Inboth scenarios, all
the required diagnostic information is provided upfront, and there is

asingle answer to be selected from alist of options. This type of ques-
tion dominates both medical licensing exams®”™, where LLMs score
well above passing® 7% and clinical case challenges, where models
rival clinician performance® .

However, while these medical licensing exams and clinical case
challenges are suitable for testing the general medical knowledge of
thetest-taker, they are far removed from the daily and complex task of
clinical decision-making. It is a multistep process that requires gath-
ering and synthesizing data from diverse sources and continuously
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evaluating the facts toreach an evidence-based decision on a patient’s
diagnosis and treatment®*. As this process is very labor intensive,
great potential exists in harnessing Al, such as LLMs, to alleviate much
of the workload. LLMs can summarize reports®>, generate reports>*,
serve as diagnostic assistants®? and could ultimately autonomously
diagnose patients. To understand how useful LLMs would beinsuch an
autonomous, real-world setting, they must be evaluated on real-world
data and under realistic conditions. However, the only analysis that
tested an LLM throughout the diagnostic clinical workflow used curated
lists of possible answers and examined only 36 hypothetical clinical
vignettes®®. Furthermore, any model that is used in such a high-stakes
clinical context must not only be highly accurate, but also adhere to
diagnostic and treatment guidelines, be robust, and follow instruc-
tions, all of which have not been tested in previous medical evaluations.

Here, we present a curated dataset based on the Medical Informa-
tion Mart for Intensive Care (MIMIC-1V) database spanning 2,400 real
patient cases and 4 common abdominal pathologies (appendicitis,
pancreatitis, cholecystitis and diverticulitis) as well as acomprehensive
evaluation framework around our dataset to simulate a realistic clini-
cal setting. We provide LLMs with a patient’s history of present illness
and ask themtoiteratively gather and synthesize additional informa-
tion such as physical examinations, laboratory results and imaging
reports until they are confident enough to provide a diagnosis and
treatment plan. Our dataset, task and analysis comprise a large-scale
evaluation of LLMs on everyday clinical decision-making tasks in a
realistic, open-ended environment. Unlike previous works, we test
the autonomous information-gathering and open-ended diagnostic
capabilities of models, representing an essential step toward evaluat-
ing their suitability as clinical decision-makers.

To understand how useful LLMs would be as second readers,
we compare the diagnostic accuracy of the models with that of clini-
cians. Furthermore, we propose and evaluate a range of character-
istics beyond diagnostic accuracy, such as adherence to diagnostic
and treatment guidelines, correct interpretation of laboratory test
results, instruction-following capabilities, and robustness to changes
in instructions, information order and information quantity. Finally,
we show that summarizing progress and filtering laboratory results
for only abnormal results addresses some of the current limitations
of models. We make our evaluation framework and dataset freely and
openly available to guide future studies considering the use of LLMs
inclinical practice.

Results

Creating the MIMIC-CDM dataset and evaluation framework
Our curated dataset, MIMIC-IV-Ext Clinical Decision Making
(MIMIC-CDM), is created using the well-established MIMIC-1V database,
which contains de-identified electronic health records®. Figure 1aand
‘MIMIC-CDM dataset’in Methods list the stepsinvolved in creating the
MIMIC-CDM dataset and its makeup. Our dataset contains data from
2,400 unique patients presenting with acute abdominal pain to the
emergency department and whose primary diagnosis was one of the
following pathologies: appendicitis, cholecystitis, diverticulitis or
pancreatitis. We chose these target pathologies as they represent clini-
cally important diagnoses of a common chief complaint, abdominal
pain, which accounts for 10% of all emergency department visits*®*".
Importantly, good differentiation between the four pathologies can
be achieved using standard diagnostic tests, all of which are present
inour dataset.

To reflect a realistic clinical setting that allows LLMs to autono-
mously engage in every step of the clinical decision-making process,
we have created a comprehensive evaluation framework around our
dataset. Using our framework and dataset, we present LLMs with a
patient’s history of presentillness and task them to gather and synthe-
sizeinformationto arrive atadiagnosis and treatment plan, which we
evaluate for diagnostic accuracy as well asadherence to guidelines, as

shown in Fig. 1b and explained in ‘Evaluation framework’ in Methods.
For comparisons with practicing clinicians and further tests concern-
ingrobustness, we evaluate the diagnosticaccuracy of LLMs as second
readers, providing all necessary information for a diagnosis upfront,
which we call MIMIC-IV-Ext Clinical Decision Making with Full Informa-
tion (MIMIC-CDM-FI).

In our study, we tested the leading open-access LLM developed
by Meta, Llama 2 (ref. 32), and its derivatives. We test both generalist
versionssuchas Llama2 Chat (70B)*’, Open Assistant (OASST) (70B)*
and WizardLM (70B)*, as well as medical-domain aligned models such
as Clinical Camel (70B)" and Meditron (70B)*. Further information
on the models and our selection criteria can be found in ‘Models’ in
Methods and Table 1. Data taken from the MIMIC databaseis currently
prohibited from being used with external application programming
interfaces (APls), suchas that of OpenAl or Google, due to data privacy
concerns and data usage agreements, so neither Chat-GPT, GPT-4,
nor Med-PaLM could be tested. We note that Llama 2, Clinical Camel
and Meditron have been shown to match and even exceed Chat-GPT
performance on medical licensing exams and biomedical question
answering tests'”.

LLMs diagnose significantly worse than clinicians

Toensurethe patient’ssafety inanautonomous clinical decision-making
scenario, LLMs must diagnose at least as well as clinicians. Thus, we
compared the diagnostic accuracy of the models on a subset of 80
patients of MIMIC-CDM-FI to four hospitalists with varying degrees
of experience and from two countries. The makeup of the subset and
details of the reader study can be found in ‘Reader study’ in Methods.

Wefind that current LLMs perform significantly worse than clini-
cians on aggregate across all diseases (doctors versus Llama 2 Chat,
P<0.001; doctors versus OASST, P < 0.001; doctors versus WizardLM,
P <0.001; doctors versus Clinical Camel, P < 0.001; doctors versus
Meditron, P< 0.001; Fig.2). The difference in mean diagnostic perfor-
mance between doctors and models was also large, ranging from 16 to
25points. The diagnostic accuracy between the clinicians varied, with
the German hospitalistsin residency (mean = 87.50% + 3.68%) perform-
ingsslightly worse than the more senior US hospitalist (mean = 92.50%),
which could be attributed to differences in experience and language
and differing guidelines between the countries.

Most models were able to match clinician performance on the
simplest diagnosis, appendicitis, where 3 of 4 clinicians also correctly
diagnosed 20 of 20 patients. While the Meditron model matched or
exceeded the other models at diagnosing patients with appendicitis,
diverticulitis and pancreatitis, it failed for cholecystitis, diagnosing
most patients simply with ‘gallstones’ without mention ofinflammatory
effects. This mirrors the general performance of the models, which may
perform well on certain pathologies but currently lack the diagnostic
range of human hospitalists. In a standard clinical scenario, where
every diagnosis is a possibility, models must perform consistently
across all pathologies of a single initial complaint, such as abdominal
pain, to be useful.

Neither of the two specialist models performed significantly bet-
ter on aggregate across all diseases and models (Clinical Camel versus
Llama 2 Chat, P=0.01; Clinical Camel versus OASST, P = 0.65; Clinical
Camel versus WizardLM, P= 0.10; Meditron versus Llama2 Chat, P>1;
Meditron versus OASST, P=0.76; Meditron versus WizardLM, P> 1;
Fig.2). Asthe medical LLMs are not instruction tuned (that is, trained
tounderstand and undertake new tasks), they are unable to complete
the full clinical decision-making task where they must first gather infor-
mation and then cometo adiagnosis. As thisis the primary-use case of
a clinical decision-making model, we excluded them from all further
analysis and only examined the Llama 2 Chat, OASST and WizardLM
models for the rest of this work.

Inour simulated clinical environment, which uses the MIMIC-CDM
dataset, the LLM must specify all information it wishes to gather to
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Fig.1|Overview of dataset creation and evaluation framework. a, To properly
evaluate LLMs for clinical decision-making in realistic conditions, we created
acurated dataset from real-world cases derived from the MIMIC-1V database,
which contains comprehensive electronic health record data recorded during
hospital admissions. b, Our evaluation framework reflects a realistic clinical
setting and thoroughly evaluates LLMs across multiple criteria, including

diagnostic accuracy, adherence to diagnostic and treatment guidelines,
consistency in following instructions, ability to interpret laboratory results, and
robustness to changes ininstruction, information quantity and information
order. ICD, International Classification of Diseases; CT, computed tomography;
US, ultrasound; MRCP, magnetic resonance cholangiopancreatography.

accurately diagnose a patient. We observed a general decrease in per-
formance, compared to MIMIC-CDM-FI (Extended Data Fig. 1), across
all pathologies (Fig. 3). The mean diagnostic averages fell to 45.5%
(versus 58.8% on MIMIC-CDM-FI) for Llama2 Chat, 54.9% (versus 67.8%)
for OASST and 53.9% (versus 65.1%) for WizardLM. All models per-
formed best in diagnosing appendicitis (Llama 2 Chat, 74.6%; OASST,
82.0%; WizardLM, 78.4%), which is most likely because patients with

appendicitis have consistent key symptoms with 791 of 957 radiologist
reports (82.7%) directly stating that the appendix is dilated, enlarged
orfilled with fluid, and typically lack other intra-abdominal pathology
descriptions that distract from the acute diagnosis.

In summary, LLMs do not reach the diagnostic accuracy of clini-
cians across all pathologies when functioning as second readers, and
degrade further in performance when they must gather allinformation
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Table 1| An overview of the considered LLMs and their properties

Model Base Parameters Training dataset Downloadable

Llama 2 Chat® Llama 2 (ref. 32) 70B Public data® v

OASST* Llama 2 (ref. 32) 70B Public data®, https://huggingface.co/OpenAssistant/llama2- v
70b-oasst-sft-v10/, open-source data

WizardLM®* Llama 2 (ref. 32) 70B Public data?, Evol-Instruct generated™

Clinical Camel® Llama 2 (ref. 32) 70B Public data?, https://sharegpt.com/; ShareGPT; PubMed articles (before v
2021)"°, MedQA"™

Meditron®® Llama 2 (ref. 32) 70B Public data?, https://huggingface.co/datasets/epfl-llm/guidelines/; clinical v
guidelines, public PubMed abstracts®, public PubMed papers*®, RedPajama™

Chat-GPT*® GPT3.5 (ref. 60) ?72? User conversations®, Common Crawl®', WebText2 (ref. 62), Books1 (ref. 63), X
Books2 (ref. 63), Wikipedia

GPT-4 (ref. 64) ?7? 77?7 ??7?

Med-PaLM?® Flan-PaLM® 540B Webpages®, Wikipedia®, social media®, GitHub®, news articles®, books®,
473 instruction fine-tuning datasets®, HealthSearchQA®, MedicationQA®®,
LiveQA®’

Med-PaLM 2 (ref. 8) PaLM 2 (ref. 68) 340B Web Documents®, books®, code®, mathematics®, conversational data®, X

MedQA", HealthSearchQA?®, MedicationQA®®, LiveQA®’

Due to the data usage agreement of MIMIC-1V, only open-access models that can be downloaded can be used with the data; thus, only LLMs based on Llama 2 were used in this study. ???
indicates no information has been made public. *Meta defines ‘public data’ as a ‘mix of data from publicly available sources’. °No further information provided.
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Fig.2|LLMs diagnose significantly worse than doctors when provided with
allinformation. On asubset (n = 80) of MIMIC-CDM-FI, we compared the mean
diagnostic accuracy of LLMs over multiple seeds (n = 20) with clinicians (n = 4)
and found that LLMs perform significantly worse on average (P < 0.001) and

Diverticulitis

89
84 9

Pancreatitis Mean

especially on cholecystitis (P < 0.001) and diverticulitis (P < 0.001). The mean
diagnostic accuracy is shown above each bar. Vertical lines indicate the standard
deviation. The individual data points are shown.

themselves. Thus, without extensive physician supervision, they would
reduce the quality of care that patients receive and are currently unfit
for the task of autonomous clinical decision-making.

Current LLMs are hasty and unsafe clinical decision-makers

In addition to poor diagnostic accuracy, LLMs often fail to order the
exams required by diagnostic guidelines, do not follow treatment
guidelines and are incapable of interpreting lab results, making them
arisk to patient safety. The current clinical guidelines used for this
study are available in the literature for appendicitis®®, cholecystitis™,
diverticulitis®® and pancreatitis®.

Allguidelines recommended physical examinations as anessential
part of the diagnostic process, preferably as the first action. We find
that only Llama 2 Chat consistently asks for physical examination
results, either as the first action (97.1%) or at all (98.1%; Extended Data
Fig. 2). The other two models requested less examinations (OASST,
79.8% and 87.7%; WizardLM, 53.1% and 63.9%), thereby omitting an
essential piece of information.

Based onthe diagnostic guidelines, we defined categories of neces-
sary laboratory tests for each pathology, including signs of inflamma-
tion, functionalfitness of the liver and gallbladder, pancreas enzymes,

and the severity of a patient’s pancreatitis. For our evaluation, we expect
atleast one test fromeach category tobe requested, and the exact tests
included in each category can be found in Supplementary Section A.
We found that no model consistently orders all necessary categories,
despite each test category being independently requested by all doc-
tors in the MIMIC-CDM dataset (Extended Data Fig. 3). While OASST
performs better than the other two models, reaching up to 93.3% and
87.2% intheinflammation category for appendicitis and diverticulitis, it
often does notorder the necessary tests for adiagnosis of pancreatitis
(pancreas enzymes, 56.5%; severity, 76.2%), partially explaining why its
diagnostic performance on pancreatitis was only 44.1% (Fig. 3).
While it is important to order the correct laboratory tests, it is
even more essential to correctly interpret them. To test the interpre-
tation capabilities of the models, we provided each test result with
the accompanying reference range and asked them to classify each
result as either below, within or above the provided range. Any human
with numerical literacy should be able to achieve perfect accuracy on
such a task; however, all LLMs performed very poorly, especially in
the critical categories of low test results (Chat, 26.5%; OASST, 70.2%;
WizardLM, 45.8%) and high test results (Chat, 50.1%; OASST, 77.2%;
WizardLM, 24.1%; Extended DataFig. 4). Such abasicincomprehension
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Fig.3 | Diagnostic accuracy of LLMs decreased in an autonomous clinical
decision-making scenario. When tasked with gathering all information
required for clinical decision-making themselves, LLMs perform best when
diagnosing appendicitis but perform poorly on the other three pathologies of
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cholecystitis, diverticulitis and pancreatitis. In such a realistic clinical scenario,
model performance decreased compared to the retrospective diagnosis with all
information provided (MIMIC-CDM-FI). The exact diagnostic accuracy is shown
above each bar.

of laboratory test results is a great risk to patient safety and must be
resolved before LLMs become useful in a diagnostic capacity.

While diagnostic guidelines provide advice on the potential use
ofimaging, highlighting the strengths and weaknesses of each modal-
ity in the context of the disease and the patient’s condition, the use of
imagingin clinical practice can vary. We found that models sometimes
matched the modalities requested by the doctors in the dataset, but
often came to a diagnosis without requesting an abdominal imaging
scan (Extended Data Fig. 5). We do not explicitly penalize models for
not requesting an imaging scan, but as we later show that imaging is
the most useful diagnostic tool for the LLMs for all pathologies except
pancreatitis, occasional failure to request imaging could be partly
responsible for their low diagnostic accuracy.

In addition to not following diagnostic guidelines, LLMs gen-
erally fail to adhere to treatment guidelines. We found that the
LLMs consistently did not recommend appropriate and sufficient
treatment, especially for patients with more severe forms of the
pathologies (Fig. 4). While they are consistent in recommending
some treatments such as appendectomy for appendicitis and anti-
biotics for diverticulitis, they rarely recommend other treatments
when appropriate such as colectomy for patients with diverticulitis
with perforated colons or drainage of infected pancreatic necrosis.
Furthermore, they drastically undertreat appendicitis with regard
to the necessity of antibiotics and providing support, undertreat
diverticulitis with the need for a colonoscopy in the future to check
for colon cancer, and undertreat pancreatitis with sufficient sup-
port. Insummary, following the treatment recommendations of the
models would negatively impact the health of patients, particularly
those with more advanced stages of disease where indications for
emergency operations were ignored.

Takentogether, the lack of consistency of the LLMs in orderingall
of the required tests for a diagnosis based on current guidelines indi-
catesatendency to diagnose before understanding or considering all
the facts of the patient’s case. Such hasty decision-making combined
with their poor diagnostic accuracy and treatment recommendations
pose aserious risk to the health of patients without extensive clinician
supervision and control.

Current LLMs require extensive clinician supervision
Inaddition to consistently and safely arriving at the correct diagnosis
and treatment plan, models must integrate into established clinical
workflows to be useful. Central to this is the ability to follow instruc-
tions and generate answers so they can be easily processed and used
by other parts of the clinic without physician supervision.

Allmodels struggle to follow the provided instructions (Extended
DataFig. 6), making errors every two to four patients when providing

actions and hallucinating nonexistent tools every two to five patients.
When providing diagnoses on the MIMIC-CDM dataset, errors are
made every three to five patients; while on the MIMIC-CDM-Fl dataset,
WizardLMis very consistentin followinginstructions,and Llama2 Chat
makes anerror onalmostevery patient. While many of these errorsare
easily caught (Supplementary Section B), the error rate is so high that
extensive manual controls would be necessary to ensure model output
isbeing correctly interpreted, reducing their usefulness asautonomous
clinical decision-makers.

Another key component that must be fulfilled before we con-
siderintegrating such models into real-world workflows is robustness.
Models must not be sensitive to small changes in user instructions as
their performance will then vary greatly based on who is interacting
with them. On the MIMIC-CDM-FI dataset, we found that changes in
instructions (Supplementary Section C) canlead to large changes (both
positive and negative) in diagnostic accuracy (Extended Data Fig. 7).
For example, large changes were seen when removing system and user
instructions (up to +5.1% for Chat on cholecystitis, down to —-16.0% for
Chat on pancreatitis), or when removing all medical terminology from
the system instruction (up to +6.2% for WizardLM on diverticulitis,
down to -3.5% for OASST on pancreatitis). Additionally, we see that
even minor changes in instructions can greatly change diagnostic
accuracy such as asking for the ‘main diagnosis’ (up to +7.0% for Chat
on diverticulitis, down to -10.6% for WizardLM on cholecystitis) or
‘primary diagnosis’ (up +8.7% for Chat on pancreatitis, down to -5.2%
for WizardLM on cholecystitis) instead of ‘final diagnosis’. Models
should be able to provide the most appropriate diagnosis given the
situation, in this case the reason for the patient’sabdominal pain, and
not be sensitive to minute changes in phrasing so as not to require
extensive clinician training before use.

Furthermore, LLMs used for autonomous clinical decision-making
should notdegrade in performance when provided with relevant diag-
nostic information. We show that models perform worse when all
diagnostic exams are provided, typically attaining their best perfor-
mance when only a single exam is provided in addition to the history
of present illness (Fig 5). Removing information greatly increases
diagnostic accuracy, with cholecystitis diagnosis improving by 18.5%
for the Chat and 16.5% for the WizardLM models when only providing
radiologist reports, and pancreatitis diagnosis improving by 21.6%
(Chat), 9.5% (OASST) and 8.6% (WizardLM) when only providing labora-
toryresults. Thisreduces the usefulness of such models as they cannot
simply be givenall relevantinformationandbe trusted to arrive at their
best diagnosis. To optimize model performance, clinicians would have
to decide which diagnosis is most likely to effectively filter the infor-
mation presented, removing any benefit of deploying an autonomous
clinical decision-making model.
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Fig. 4 |LLMs do not consistently recommend essential and patient-specific
treatment. Expected treatments were determined based on clinical guidelines
and actual treatments received by patients in the dataset. Models fail to
recommend appropriate treatments especially for patients with more severe
forms of the pathologies. We only scored models on the subset of patients that
they correctly diagnosed and that actually received a specific treatment. For

example, of the 957 patients with appendicitis, 808 received an appendectomy
(indicated below the treatment name). Of those 808 patients, Llama 2 Chat
correctly diagnosed 603 (indicated below the Llama 2 Chat bar). Of those 603
patients, Llama 2 Chat correctly recommended an appendectomy 97.5% of the
time. ERCP, endoscopic retrograde cholangiopancreatography.

We further tested the diagnostic consistency of the models on
the MIMIC-CDM-Fl dataset by switching the order of the information
from the canonical physical examination, then laboratory tests, then
imaging, toall possible permutations thereof (history of presentillness
was alwaysincluded first). We showed that all models have large ranges
of performance, up to 18.0% (Chat—pancreatitis), 7.9% (OASST—chol-
ecystitis) and 5.4% (WizardLM—cholecystitis; Fig. 6 and Supplementary
Section D). Importantly, we found that the order of information that
delivers the best performance for each model is different for each
pathology (Supplementary Section E). This again reduces the benefits
of deploying the models as clinicians must constantly consider and
monitor in which order they provide the models with information, in
adisease-specific manner, to not degrade performance.

In summary, extensive clinician supervision and prior evaluation
of the most probable diagnosis would be required to ensure proper
functioning of LLMs because they do not reliably follow instructions,
perform better with a disease-dependent order of information and
degrade in performance when given relevant information. Further-
more, their sensitivity to small changesininstructions that seemincon-
sequential to humans would require extensive clinician training to
ensure good performance.

First steps toward mitigating limitations of current LLMs

To help address some of the limitations found in this analysis, we
explore simple modifications that canbe done without retraining the
model. One major limitation is that LLMs are currently limited in the
amount of text they can read, which we address with an automatic

summarization protocol (‘Evaluation framework’in Methods). Remov-
ing suchasummarization protocol resulted in marginal but consistent
losses on the mean of —-1.3% (Chat), —-0.8% (OASST) and -0.5% (Wiz-
ardLM), and particularly hurt the diagnosis of diverticulitis (—4.7%,
Chat; -2.7%, OASST; -3.5%, Wizard; Supplementary Section F). Due to
theinability of LLMs toreliably interpret laboratory results (Extended
DataFig.4),evenwhen provided with reference ranges, and theirissues
understanding larger quantities of information (Fig. 5), we found that
filtering thelaboratory results and removing allnormal test results gen-
erallyimproved performance on the MIMIC-CDM-Fl dataset (Extended
DataFig.8). Asmany of our other analyses examine the general behavior
of laboratory tests and their impact on model performance, we do
not use this fix for any other sections of this work. While this filtering
improves the performance of the LLMs as they function today, ideally
amodel would perform best with all available information.

Discussion

The strong performance of LLMs on medical licensing exams has led
toincreased interest in using them in clinical decision-making scenar-
ios involving real patients. However, medical licensing exams do not
test the capabilities required for real-world clinical decision-making.
We have evaluated leading open-access LLMs in an autonomous clini-
cal decision-making scenario with thousands of real-world cases to
assess their potential benefits and possible harms. By not only com-
paring their diagnostic performance against clinicians, but also test-
ing their information-gathering abilities, adherence to guidelines and
instruction-following capabilities as well as their robustness to changesin
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Fig. 5| LLMs are sensitive to the quantity of information provided. We
compared the performance of each model using all diagnostic information to
using only asingle diagnostic examin addition to the history of present illness.
For almost all diseases, providing all information does not lead to the best
performance on the MIMIC-CDM-Fl dataset. This suggests that LLMs cannot
focus on the key facts and degrade in performance when too much information is

provided. This poses a problemin the clinic where an abundance of information
is typically gathered to holistically understand the patient’s health and being able
to focus on key facts is an essential skill. The gray theoretical best line shows the
mean performanceifa clinician were to select the best diagnostic test for each
pathology. HPI, history of present illness.
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Fig. 6 | LLMs are sensitive to the order of information. By changing the order
inwhich diagnostic information from MIMIC-CDM-Flis presented to LLMs, their
diagnostic accuracy changes despite the information included staying the same.
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This places an unnecessary burden upon clinicians who would need to make
preliminary diagnoses to decide the order in which they feed the models with
information for best performance.

prompts, information order and information quantity, we move beyond
simple evaluations of diagnostic accuracy and establish arange of charac-
teristicsthatare necessary for safe and robust integration into the clinic.
Inthiswork, we have shown that currentleading LLMs are unsuitable for
autonomous clinical decision-making on all of these accounts.

The biggest barrier to using current LLMs either for autono-
mous clinical decision-making or as a second reader is that no model
consistently reached the diagnostic accuracy of clinicians across all
pathologies, withafurther decreaseinaccuracy when having to gather
diagnosticinformation themselves. To optimize performance on this
specific clinical decision-making task, future studies could explore
fine-tuning*® or prompt-tuning* a base LLM as well as automated
promptengineering*. Another criticalissue is that LLMs are unable to
classify alab result as normal or abnormal, even when provided with
its reference range. This is underscored by the fact that presenting
the model with only abnormal laboratory results generally improved
diagnostic performance.

We further found that the models do not follow diagnostic guide-
lines, which is particularly problematic considering their low overall
diagnostic accuracy, indicating a tendency to diagnose before fully
understandinga patient’s case. Insufficient diagnostic information also
negatively affected the treatment recommendations of LLMs, where we
showed that models do not follow all established treatment guidelines,
especially for severe cases. The hasty decision-making of the models

combined with their low diagnostic performance and poor treatment
recommendations pose aserious risk to the health of patients without
extensive clinician supervision and control.

Beyond diagnostic accuracy, we extensively test models on their
reliability and robustness, which are essential characteristics to ensure
consistent and safe patient care. We found that models struggle to fol-
low instructions, often hallucinating nonexistent tools and requiring
continuous manual supervision to ensure proper performance. Models
arealso sensitive to seemingly inconsequential changesininstruction
phrasing, requiring clinicians to carefully monitor the language they
usetointeract withthe modelstonot degrade performance. Contrary
toexpectation, LLMs diagnose best when only asingle diagnostic exam
is provided rather than when givenall relevant diagnosticinformation,
demonstrating an inability to extract the most important diagnostic
signal from the evidence. Future work could explore explicitly sum-
marizing each new piece of evidence to further focus the model on only
the most relevantinformation. Counterintuitively, we found models to
be sensitive to the orderinwhich informationis presented, resultingin
large changesin diagnostic accuracy despite identical diagnosticinfor-
mation. Importantly, all of these weaknesses are disease specific within
each model, meaning that a different instruction, diagnostic test and
order of tests achieved the best results for each pathology. Physicians
would thus have to perform preliminary diagnostic evaluations in an
attempt to maximize model performance according to their suspected
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diagnosis. Thisbothincreases the cognitive burden placed upon physi-
cians and biases models toward the current preliminary diagnosis of
the physician, removing the benefit of an unbiased second opinion.

Many of the current limitations of LLMs exposed in our study have
been shown concurrently in domains outside medicine. It has been
shown that LLMs are easily distracted* and that their performance on
tasks can vary by between 8% and 50% just by optimizing the instruc-
tions**. The sensitivity of LLMs to the order of presented information
hasbeen well documented on multiple-choice questions**and infor-
mationretrieval”. The difficulty LLMs have in interpreting numbers*®
and solving simple arithmetic*’ isanactive researchtopic®*". Eventhe
largest models currently available, PaLM 2 and GPT-4, perform poorly
oninstruction-following tests*>. Our analysis demonstrates how these
current limitations of LLMs become harmful in medical contexts where
robustness and consistency are essential.

We argue that these understudied aspects of model performance
should become normal parts of medical model evaluations and that all
of these issues must be addressed before LLMs can be considered for
clinical decision-making.

While we have been able to demonstrate the limitations of current
leading LLMs for clinical decision-making, we consider the following
limitations of our study. First, as we are using a dataset of real-world
clinical data, we must deny requests for data not in the dataset. How-
ever, as the MIMIC-IV database contains all data gathered during the
hospital stay, we can assume that allinformation required for adiagno-
sis and treatment plan is contained within our dataset. Furthermore,
being flexible enough to handle acute restrictions, such as unavailable
imaging modalities or laboratory tests, and stillcome to a correct diag-
nosisis adesirable ability for any real-world clinical Alapplication. Due
to this difficulty, we were lenient in our evaluation of the diagnoses,
accepting alternative names for the pathologies, as long as they were
medically correct (see Supplementary Section G). Additionally, both
datasets and models have a clear bias toward the USA. The MIMIC data
are in English and were gathered in an American hospital by doctors
following American diagnostic and treatment guidelines. As the text
used to train the LLMs is over 98% English and the most mentioned
nationality by far is American (69.4%)*?, the models are well suited
for the constructed dataset, allowing us to use exclusively American
guidelines for a fair evaluation. However, the generalizability of our
results to other languages or countries with differing guidelines is
unknown and needs to be explored in future work. To make sure the
gains of advanced Al are equitably shared among all communities,
there is a strong need for more clinical datasets in languages other
than English and from countries other than the USA.

Webelieve that there exists great potential in using LLMs as clinical
support systems with close collaboration between models and clini-
cians””’; however, we have primarily evaluated the capabilities of models
as autonomous decision-makers in this study. This allows for a fair and
consistent evaluation of any current and future models, reducing the
additional timerequired and costs generated by including multiple doc-
torsinevery evaluation. We welcome the use of our dataset and evaluation
framework to test precisely such a collaborative effort between models
and clinicians, where the summaries, actions and possible diagnoses of
models returned throughout our framework are served to clinicians as
an unbiased second opinion or to generate a list of possible diagnoses.
Importantly, studies as to theimpact of automation bias*** and human-
Alinteraction biases could also be exploredinsuch a context® ¥,

Lastly, by focusing on curating data for in-depth analysis of model
behavioralongevery step of the diagnostic pathway, it was not feasible
toinclude the full breadth of abdominal diseases. A fully autonomous
clinical decision-making model must show strong performance across
all possible pathologies of a particular initial complaint to guarantee
adequate patient care; thus, it will be important to test future mod-
els on both additional diagnostic endpoints and a broader range of
initial complaints.

In conclusion, our study presents an analysis of the capabili-
ties of current state-of-the-art LLMs on real-world data in a realistic
clinical decision-making scenario. Our main finding is that current
models do notachieve satisfactory diagnostic accuracy, performing
significantly worse than trained physicians, and do not follow treat-
ment guidelines, thus posing a serious risk to the health of patients.
Thisisexacerbated by the fact that they do not request the necessary
exams for a safe differential diagnosis, as required by diagnostic
guidelines, indicating a tendency to diagnose before fully under-
standing a patient’s case. Furthermore, we show LLMs are distracted
by relevant diagnosticinformation, are sensitive to the order of diag-
nostic tests and struggle to follow instructions, prohibiting their
autonomous deployment in the clinic and requiring extensive clini-
ciansupervision.

By sourcing our dataset fromreal clinical cases and closely aligning
our evaluation criteria with official diagnostic and treatment guide-
lines, we present an analysis to help physicians understand how well
LLMs would performinthe clinic today. While our findings cast doubt
onthesuitability of LLMs for clinical decision-making as they currently
exist, we believe there lies great potential in their use after the issues
raised areresolved.

By making our dataset and framework freely available, we hope
to guide the development of the next generation of clinical Almodels
and contribute toward a future where physicians can feel confidentin
using safe and robust models to improve patient outcomes.
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Methods

MIMIC-CDM dataset

We created our curated dataset of 2,400 patients, which we call
MIMIC-CDM, using the MIMIC-IV Database®’. The MIMIC-1V Database
isacomprehensive, publicly available database managed by the Mas-
sachusetts Institute of Technology (MIT) of the de-identified elec-
tronic health records of almost 300,000 patients who presented to
the Beth Israel Deaconess Medical Center in Boston, Massachusetts,
USA from2008t02019. It contains real patient cases from the hospital
andincludesall recorded measurements such as laboratory and micro-
biology test results, diagnoses, procedures, treatments and free-text
clinical notes such as discharge summaries and radiologist reports.

In this work, we focus on four target pathologies for which we
filter: appendicitis, cholecystitis, diverticulitis and pancreatitis. As
we are only testing for these pathologies, we must ensure that they
are the primary diagnosis and reason for the patient presenting to the
emergency department and not merely asecondary diagnosis during
alonger and more serious hospital admission. Thus, we first filtered
patients for our targets using the diagnosis table, which contains all
recorded diagnostic International Statistical Classification of Diseases
and Related Health Problems (ICD) codes. Then, we manually checked
the discharge diagnosis of each patient’s discharge summary and only
included those patients whose very first primary diagnosis was one of
our pathologies. If any other diagnosis was written in the discharge
diagnosis before one of our targets, the patient’s case was removed
fromthe dataset. If a patient was diagnosed with more than one of the
four pathologies included in our analysis, the patient was removed
from the dataset.

After filtering for the appropriate pathologies, we split the dis-
charge summary intoitsindividual sections, extracting the history of
presentillness and physical examination. First, we removed all patients
who had pathology mentioned intheir history of presentillness asthese
admissions were mostly transfers where the diagnosis had already
been established and the hospital admission data were thus missing
the initial emergency department test results relevant for diagnostic
purposes. Furthermore, we removed all patients who had no physical
examinationincluded as thisis a crucial source of informationaccord-
ing to the diagnostic guidelines of each pathology.

We gathered all laboratory and microbiology tests recorded dur-
ing a patient’s hospital admission and those up to 1 day before admis-
sion. We included tests up to 1 day before admission as the MIMIC-1V
documentation states that there are millions of laboratory tests that
are not associated with any hospital admission but can be joined to
patient stays using the patient’s ID, recorded test time and hospital
admission time. The tests before the official start of the admission
often had highly relevant values for diagnostic purposes and were
thus included, although only if they were not associated with any
other hospital admission. If a laboratory test was recorded multiple
times, we included only the first entry in our dataset to simulate a
therapy-naive diagnostic clinical decision-making scenario. Thus, we
currently do not capture the changes in laboratory test values if the
patient’s condition deteriorates over their hospital stay. This could
be remedied by examining all time points and determining the most
abnormal test result to be returned or by allowing multiple requests
for laboratory tests to return successive test results. However, both
of these approaches would widen the temporal gap of provided test
results, possibly providing conflicting diagnostic signals. Consider-
ing LLMs also have poor temporal reasoning capabilities®’, simply
including the timestamp would most likely not be an adequate solu-
tion. Furthermore, we saved all reference ranges of the laboratory
tests provided by MIMIC and established acomprehensive dictionary
mapping possible synonyms and abbreviations of tests to their original
entry to be able to interpret all requests of the LLMs for test results.
This dictionary of synonyms was constantly expanded during initial
testing of the models until no unrecognized tests were recorded.

The dictionary also contains common laboratory test panel names
that maptoalist of theindividual tests of that panel, such as complete
blood count, basic metabolic panel, liver function panel, renal function
panel and urinalysis, among others.

Similarly to the laboratory data, many radiology reports were
not associated with any hospital admission, but their timestamp
was a few hours before the recorded start of the hospital admis-
sion. These often contained diagnosis-relevant information and
so we used the same 24-h inclusion criteria as those used for the
laboratory results and again allowed only those exams not associ-
ated with any other hospital admission. Next, we established a list
of uniquely identifying keywords for each anatomical region and
imaging modality. We used this list of keywords to determine the
region and modality of each included report from its MIMIC-1V
provided exam name. Mappings were made for special exams such
as CT urography to CT and MRCP to magnetic resonance imaging,
to provide them if, for example, a CT scan or magnetic resonance
imaging was requested, due to their low frequency. We also used this
listwheninterpreting the model requests forimaging information
during evaluation. We manually checked and adjusted the keywords
until all reports in MIMIC-IV were correctly classified. Radiology
reports were splitintoreportsections and only the ‘findings’ section
wasincluded. This was done as many other sections such as ‘conclu-
sions’ or ‘impressions’ contained the diagnosis of the radiologist,
which would have made the task trivial.

Finally, all procedures and operations performed during a patient’s
hospital stay were saved to understand which patient-specific treat-
ments were undertaken. The procedures in the MIMIC-IV procedures
table saved as ICD-9 and ICD-10 codes were extracted and combined
with the free-text procedures section from each patient’s discharge
summary. The free-text extraction from the discharge summary was
required as many essential procedures, including surgeries, were often
notincludedinthe procedures table.

A final round of data cleaning replaced any remaining mentions
of the primary diagnosis with three underscores‘__’, whichis used by
MIMIC-IV to censor data such as a patient’s name or age. To increase
data quality, we excluded patients who had no associated laboratory
tests or for whom no abdominalimaging was recorded. The final data-
set, MIMIC-CDM, contains 2,400 unique patients presenting to the
emergency department with one of the four target pathologies (957
appendicitis, 648 cholecystitis, 257 diverticulitis, 538 pancreatitis)
and whose makeup is detailed in Fig. 1a. The dataset contains physi-
cal examinations for all patients (2,400), 138,788 laboratory results
from 480 unique laboratory tests and 4,403 microbiology results
from 74 unique tests. Furthermore, MIMIC-CDM contains 5,959 radiol-
ogy reports, including 1,836 abdominal CTs, 1,728 chest X-rays, 1,325
abdominal ultrasounds, 342 abdominal X-rays and 227 MRCP scans.
Finally, there were 395 unique procedures recorded over all patients,
withatotal of 2,917 1CD procedures plus the 2,400 free-text procedures
specified in the discharge summaries. Supplementary Section H shows
the age, sex and race statistics of the patientsin the dataset split up by
pathology. As the reports provided were de-identified, the models
did not have access to any of these characteristics during evaluation.

A second version of the dataset, which we call MIMIC-CDM-FI,
combines all the information required for diagnosing each case and
presents it all at once. Here we include the history of present illness,
physical examination, all abdominal imaging and all laboratory data
helpful for both reaching the correct diagnosis and ruling out differen-
tial diagnoses. To determine which laboratory data toinclude, we used
the diagnostic guidelines of each disease: appendicitis®, cholecystitis*,
diverticulitis®® and pancreatitis®. The specific tests included in each
category can be found in Supplementary Section A. The information
ispresented in the order: history of presentillness, physical examina-
tion, laboratory results, imaging. The imaging is ordered by chart time
from earliest to latest.
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Reader study

For our reader study, we included two clinicians from the Klinikum
RechtsderIsar Hospital of the Technical University of Munich, Germany
(with 2 and 3 years of experience), one from the Ludwig Maximilian
University Hospital in Munich, Germany (4 years of experience) and
one from the Christiana Care hospital in Delaware, USA (29 years of
experience).

All four of the hospitalists are internal medicine physicians with
emergency department experience.

Asubset of 80 representative patients of the MIMIC-CDM-Fl data-
set was randomly selected to be used for comparison with the physi-
cians. The subset was evenly splitbetween the four target pathologies
with 20 patients randomly selected from each pathology and matching
the makeup of the full dataset (Supplementary Section H). To mitigate
the risk of physicians recognizing the pattern of four distinct target
pathologies, afurther five patients presenting with gastritis, aurinary
tractinfection, esophageal reflux and a hernia were included. For the
physicians, the data were prepared as a PDF and the information was
provided exactly in the same order and quantity as for the models.
Reference ranges were included when provided by MIMIC-IV. The
abbreviations in the history of present illness and physical examina-
tion were replaced with unabbreviated text for the German doctors,
as they were unfamiliar with US-specific abbreviations. The models
performed worse with unabbreviated text (Supplementary Section
I). The laboratory data were provided as a table in the PDF to increase
readability. Thus, the final dataset used in the reader study spanned
100 patients, of whom 80 are part of MIMIC-CDM-FI. Each hospitalist
wasinstructed to provide the primary pathology affecting the patient
and was given the same 100 patientsinarandom order to diagnose.

Each LLM model was evaluated 20 times, using different random
seeds, over the subset of 80 patients to increase statistical power. All
statistical tests were corrected for multiple comparisons (‘Metrics and
statistical analysis’in Methods).

Our comparison between models and clinicians included only
three doctors in residency from Germany and one senior hospitalist
from the United States. Increasing the diversity and number of clini-
ciansaswell asthe number of patient cases evaluated would give amore
nuanced view of model performance compared to practicing hospi-
talists. Future models could possibly soon reach or even outperform
cliniciansinresidency and thus provide alow-cost, interactive second
opinion to consult, as is already the case for Almodels in other areas
such as mammography screening’.

Evaluation framework

To realistically test the capabilities of LLMs on the task of clinical
decision-making, we simulated a clinical environment in whichapatient
presents to the emergency department with acute abdominal pain
and information must be iteratively gathered before a final diagnosis
is made. The LLM is tasked with the Clinical Decision Making (CDM)
task (Supplementary Section C.1), which instructs it to consider a
patient’s symptoms and gather information to come to a diagnosis
and treatment plan while also explaining the two formats it should
answer with. Both formats ask the LLM to ‘think’ (that is, consider the
evidence, which has been shown to improve the quality of reasoning
and future actions’’?), and then either request more information
or provide a diagnosis and treatment plan. This allows the model to
summarize the most important information into the thoughts sec-
tion, which guides their choice of action or diagnosis. If it chooses to
request more information, it must state ‘action’ followed by either
‘physical examination’, ‘laboratory test’ or ‘imaging’. Additionally, it
must provide an ‘action input’, which specifies what information is
desired fromtheaction (thatis, ‘complete blood count’ or ‘abdominal
ultrasound’). The‘actioninput’fieldisignored if a physical examination
isrequested. The second format is to be used when the model decides
enough information has been gathered for a diagnosis, and asks the

model to consider the evidence one last time and then provide a final
diagnosis and treatment plan.

The model is initially presented with these instructions and the
history of presentillness of the patient and then prompted torecord its
‘thoughts’; thus, beginning the clinical decision-making task. Outputs
aregenerated until either astop tokenis reached or the model generates
the ‘observation(s)’ phrase, indicating thatithasreached the end ofits
action request and would potentially start hallucinating the result of
its request. We stop model text generation here and then examine the
response of the model, extracting which action was desired and what the
inputtothatactionis. Ifthe model does not follow the instructions and,
forexample, writes ‘performa physical examination’instead of ‘action:
physical examination’, we still provide the appropriate information but
record everyinstance of it not following instructions for our evaluations
(Extended Data Fig. 6). We call these errors ‘next action errors..

If the requested information is available for that patient case,
we return it and prompt the model again to consider the evidence. If
the information is not available, we inform the model and ask for an
alternative action. Wereturn only the laboratory tests and radiologist
reports that were specifically requested. Laboratory tests are compared
tothe previously mentioned dictionary of available teststoreturnthe
best match. If no matchisfound, ‘NA’is returned. Requests forimaging
have the exam modality and anatomical region extracted using the
aforementioned keyword lists and used to match against those saved
for that patientin MIMIC-CDM. If multiple reports exist for amodality
and region combination, we return the first report chronologically.
The next request for an imaging examination of that modality and
region will return the next report chronologically. Once there are
no reports left to return, we inform the model that we can no longer
providereports of that modality and region combination. Ifa physical
examinationwas requested, we return the entire physical examination
regardless of any specifications made in the ‘action input’ field. We
do this because we consider it best practice to perform a complete
physical examination of a patient rather than only partially, and reli-
ably separating a physical examination reportintoits partsis difficult
due to their free-form and heavily abbreviated style. If an invalid tool
isrequested (‘hallucinated’), we state that the tool does not exist and
remind it which tools are available, or that it should make a diagnosis
and provide a treatment plan. These occasions are also recorded as tool
hallucinations for our evaluations (Extended Data Fig. 6). An example
exchange between an LLM and our framework canbe seeninFig.1b and
Supplementary Section]. We repeat this process, prompting the LLM
tothinkandinturnreceiving requests forinformation. Once the model
decides thatit has gathered sufficientinformation, it outputs its final
diagnosis and treatment plan, ending the clinical decision-making task
forthat patient. The final diagnosis is then evaluated to see if it contains
therecorded pathology of the patient. In addition to a direct match of
the pathology name (that s, appendicitis, cholecystitis, diverticulitis
or pancreatitis), we allow for a range of alternative phrasings as long
as they are medically correct (Supplementary Section G). If multiple
diagnoses are given, we only examine the first diagnosis mentioned.
This is how we calculate the diagnostic accuracy for all analyses. Anew
instance of the task is then started for the next patient.

AsLLMs canonly take alimited amount of words asinput, with all
models tested in this study having a limit of 4,096 tokens or approxi-
mately 2,400 words, we monitor the length of the conversation. If
we approach the input limit of the model, we ask it to summarize the
informationit hasreceivedsofartoreduce thelength of the conversa-
tion (Supplementary Section C.2). We first summarize each gathered
piece of informationindividually, leaving the initial history of present
illness and instructions untouched. As LLMs have no memory and
interpret each request independently, we replace the original pieces
of information with the summaries. If we have summarized all steps of
the interaction and still approach the limit of the model, we force the
generation of adiagnosis and treatment plan.
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For the MIMIC-CDM-FI dataset, we instruct the model to con-
sider the facts of the case and then provide a diagnosis and only a
diagnosis (Supplementary Section C.3). As previously explained, the
MIMIC-CDM-FI dataset includes the history of present illness, physi-
cal examination, all relevant laboratory results and every radiologist
report where the abdominal region wasinspected. Radiologist reports
of otherregions were notincluded dueto theinputlength limits of the
models. If including all of this information exceeds the input length
of the model, we ask the LLM to summarize each radiologist report
individually. If the input length is still exceeded, we ask the LLM to
summarize allimaginginformation atonce. Intherare cases where the
inputlength continues to be exceeded, we remove words from the final
imaging summary until there is enough space for a diagnosis (that is,
25 tokens or 20 words).

Analysis

Treatment requested. To evaluate the ability of the LLMs to recom-
mend appropriate treatments, we used the aforementioned guidelines
to extract the possible treatments for each pathology and then to
classify each treatment as either essential (for example, antibiotics
and support) or case specific (for example, appendectomy, cholecys-
tectomy and drainage). For each patient, we then determined if the
case-specific treatment was appropriate by matching against the actual
operations performed on that patient, read from the MIMIC-CDM
dataset. We evaluated amodel’s treatment recommendation only when
it correctly diagnosed a patient since an inaccurate diagnosis likely
leads to inappropriate treatment. For support, we expect mentions of
fluids, painmanagement or monitoring for appendicitis, cholecystitis
and diverticulitis. As it is the main form of treatment for pancreatitis,
we expect mentions of all three for this disease.

Instruction-following capabilities. During the clinical
decision-making process, we provide clear instructions to the mod-
elsastohow they should provide their requests and diagnosis, as well
aswhichtools are available to them (Supplementary Section C.1). For
example, diagnostic tools must be written in the ‘action’ field and
desired tests must be specified in the “action input’ field, and not in
the middle of aparagraph surrounded by other text. This is essential to
ensure that the desired tests can be consistently extracted sonomanual
cliniciansupervisionandinterpretationisrequired. Through extensive
comparisons of LLM outputs with dictionaries of known exams and
their synonyms, we go to great lengths to understand what tests are
requested, even if the models do not follow our schema, recording
every time they fail to follow instructions. We investigated the capabili-
ties of models to follow ourinstructions at three time points during our
analysis: (1) when providing the next action to take, (2) whenrequesting
atool and (3) when providing a diagnosis.

Models
Model selection. An overview of the models included and considered
isgivenin Table 1.

Whendeciding whichmodelsto test, we started by only considering
models withacontextlength of 4,096 tokens due to the large amounts of
text contained within the MIMIC-CDM clinical cases. The contextlength
defines how many combined tokens an LLM can read and write. For
example, ifamodel has a contextlength of 2,048 and receives aninput of
2,000tokens, it can only generate 48 new tokens. Aminimum length of
4,096isrequired, asthe average number of tokens of relevantinforma-
tion per patient case in MIMIC-CDM-Flis 2,080 tokens with a maximum
countof15,023 tokens. If one considers the extratokens that are required
for the back-and-forth information gathering using MIMIC-CDM data,
this quickly exceeds the limit of 2,048 tokens of smaller models (context
length windows almost always differ in powers of 2).

Next, we considered which open-access models performed best
on medical reasoning tasks. To gauge model strength, we used the

MedQA" datasetas it comprises 12,723 questions from the USMLE and
is thus a good gauge of general medical knowledge contained within
the model. At the time of writing, Llama 2 is the leading open-access
model onthe MedQA (USMLE) dataset, with the 70B model achieving
ascore of 58.4 (ref. 35), exceeding that of GPT3.5, which scored only
53.6 (ref.10).

To effectively complete the clinical decision-making task with-
out specific fine-tuning to the task and format, the model must be
fine-tuned to instructions. Instruction fine-tuning involves training
amodel to adapt to a wide range of new tasks so that it can, with
minimal instruction or example, complete an unseen task, like our
clinical decision-making objective. The most popular and performant
instruction fine-tuned versions of Llama2 are Llama 2 Chat, fine-tuned
by Metathemselves; WizardLM, fine-tuned by Microsoft using evolu-
tionary algorithm (Evo-Instruct)-generated training data; and OASST,
fine-tuned using a crowd-sourced collection of 161,443 messages.
Currently the only two existing medically fine-tuned versions of
Llama2 with a context length of 4,096 and 70B parameters are Clini-
cal Camel and Meditron, respectively. Neither has been extensively
fine-tuned toinstructions and thus they both generated nonsensical
and repetitive responses to the clinical decision-making objective
using MIMIC-CDM data.

Currently, the most popular and leading closed-source LLMs for
medical question answering are Chat-GPT (MedQA: -53.6)"°, GPT-4
(MedQA:90.2)*°,Med-PaLM (MedQA: 67.2)° and Med-PaLM 2 (MedQA:
86.5)%. As previously stated, due to the signed data usage agreements
ofthe MIMIC-IV database, the data cannot be sent to external servers™,
precluding its use with closed-source models that are only accessible
through an APl and whose models cannot be downloaded.

Furthermore, Chat-GPTis fine-tuned primarily through user con-
versations with themodel, and since itisimpossible to knowif portions
of the MIMIC-1V database have already been used for queries by users
less aware of the data usage agreement”®, the data could already have
been seen by the model during training, invalidating any results it
produces. Little to noinformation is known about the training data of
GPT-4, giving rise to analogous concerns about its performance. While
the exact pretraining data of Llama 2 are also not known, Meta has
stated thatit only used ‘publicly available online data’, which strongly
mitigates the risk of MIMIC-IV data having been used. Med-PaLM and
Med-PaLM 2 achieve strong scores on MedQA but the exact data used
for training are unknown, the models are only accessible through an
API, and accessto the modelsis currently unavailable for all research-
ers.Repeated requests for access were denied.

We strongly agree with the current sentiment that open-source
models must drive progress in the field of medical Al due to patient
privacy and safety concerns, corporate lack of transparency and the
danger of unreliable external providers™. It is a serious risk to patient
safety if key medical infrastructure is based on external company APIs
and models whose performance could change erratically with updates
and which could generally be deactivated for any reason.

For eachmodeltested, we downloaded and used the GPTQ quan-
tized version from Hugging Face, the central repository for all LLM
models. GPTQ quantization reduces the numerical precision of the
weights while monitoring the generated output to reduce the GPU
memory requirements of a model while preserving performance”.
The GPTQ parameters of the downloaded models were: 4 bits, 32 group
size, act order true, 0.1damp% and 4,096 sequence length. This gives
the highest possible inference quality while reducing model size to
around 40 GB, which can fit onto a single A40 GPU. This reflects an
economically realistic scenario of asingle high-end GPU being used to
host the model to run the clinical decision-making task. A fixed seed
0f 2023 and greedy decoding were used for all experiments making
all results deterministic and reproducible, except for the evaluation
on the subset of 80 patients for comparison with clinicians where 20
different seeds were used for increased statistical power.
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An overview of model strengths and weaknesses. Among the models
tested in this study, we found that OASST performed best overall as it
had decent diagnostic accuracy, generally requested appropriate labo-
ratory exams and was most robust to changes ininformation quantity.
Llama2 Chat had the worst overall diagnostic accuracy, often refused
to follow instructions and was heavily influenced by the order and
quantity of information, but it was the only model to consistently ask
for a physical examination. WizardLM was the most robust to changes
inthe order of diagnostic exams and followed instructions well when
returning diagnoses, but was the worst at following diagnostic guide-
lines, failing to consistently order physical examinations and necessary
laboratory tests. Despite the performance of OASST being gener-
ally better than Chat and WizardLM across the diverse set of analyses
included in this study, it is still not currently suitable for clinical use
duetoitsinferior performance compared to clinicians, broad failure to
order correct treatments and general lack of robustness. While one of
the medical-domain models, Clinical Camel, achieved the highest diag-
nosticaccuracy (mean = 73% versus OASST mean = 68%; Extended Data
Fig.1),itsinability to participatein theiterative clinical decision-making
task precluded it from evaluations of its robustness and consistency,
whichwebelieve to be essential to ensure safe deploymentin the clinic.
Other LLMs such as Chat-GPT, GPT-4, Med-PaLM and Med-PaLM 2
could not be tested due to the data privacy and usage agreements of
MIMIC-1V, highlighting the risk of using corporate models in a sensi-
tive area such as medicine, where patient privacy, transparency and
reliability are essential’*”.

Metrics and statistical analysis

By focusing on curating data for in-depth analysis of model behavior
alongevery step of the diagnostic pathway, it was not feasible to include
the full breadth of abdominal diseases. However, for anaccurate count-
ing of false positives and true negatives, the patientsin our dataset and
patients presenting to a hospital with abdominal pain should have a
similar diversity of disease. As this is not the case, metrics based on
the false positives and true negatives could potentially be misleading.

Given these constraints, we calculate and use the per-class accu-
racy throughout our work, which is the only metric that can be calcu-
lated without bias as it only requires the samples of a single class. For
eachmodel and disease combination, we divided the number of correct
diagnoses by the total number of patients with that disease. Additional
metrics areincluded inSupplementary Section K, although they are to
beinterpreted with caution.

All statistical tests were conducted using the Python programming
language (version 3.10) and the SciPy library. Comparisons of means
were tested for statistical significance using two-sided Student’s t-tests
with unequal variances (tested through Bartlett’s tests). To account
for multiple comparisons, P values were Bonferroni corrected with a
multiplier of 5 for the comparison of the doctors against the models
and 3 for the comparison of the specialist and generalist models.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The dataset is available to all researchers who create an account on
https://physionet.org/ and follow the steps to gain access to the
MIMIC-IV database (https://physionet.org/content/mimiciv/2.2/).
Access is given after completing the ‘CITI data or specimens only
research’ training course. The data use agreement of PhysioNet for
‘credentialed health data’ must also be signed. The dataset can then
be recreated using the code found at https://github.com/paulhager/
MIMIC-Clinical-Decision-Making-Dataset/. The generated dataset can
also be directly downloaded from PhysioNet oncec (see above) via
https://www.physionet.org/content/mimic-iv-ext-cdm/1.0/.

Code availability

The evaluation framework used for this study can be found at https://
github.com/paulhager/MIMIC-Clinical-Decision-Making-Framework/.
The analysis framework to evaluate all results, generate all plots and
perform all statistical analysis can be found at https://github.com/
paulhager/MIMIC-Clinical-Decision-Making-Analysis/. All code uses
Pythonv3.10, pytorch v2.1.1, transformers v4.35.2, spacy v3.4.4, lang-
chain v0.0.339, optimum v1.14, thefuzz v0.20, exllamav2 v0.0.8, nltk
v3.8.1, negspacy v1.0.4 and scispacy v0.5.2. The code to create the
dataset uses Python v3.10 and pandas v2.1.3.
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Extended Data Fig. 1| Model performance on the MIMIC-CDM-FI dataset. LLMs perform best on the MIMIC-CDM-Fl dataset where all information required for

adiagnosisis provided, especially on pathologies with strong indications such as appendicitis (dilated appendix described in radiologist report) and pancreatitis
(elevated pancreatic enzymes listed in laboratory test results).

Nature Medicine



Article

https://doi.org/10.1038/s41591-024-03097-1

=
o
o

o5}
o

[=)]
o

40

20

Examination Requested (%)

M Llama 2 Chat
97.1

Physical Examination

79.8
I 53'1

mmm OASST WizardLM
98.1

87.7
I :

(Late) Physical Examination
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guidelines, help differentiate abdominal pathologies, as results can indicate that the MIMIC Doctors requested all necessary tests in every patient case.
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Extended Data Fig. 4 | LLMs are incapable of interpreting lab results. To test (high). We found that LLMs are incapable of consistently interpreting the result
the ability of LLMs to interpret laboratory data, we provided each laboratory asnormal, low or high, despite being provided with all required information. The
test result and its reference range and asked the model to classify the result as models performed especially poorly on abnormal results which are of particular
below the reference range (low), within the range (normal) or above the range importance to establishing a diagnosis.
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imaging at all. As we show that imaging is the most useful diagnostic tool for all
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Extended Data Fig. 6 | LLMs struggle to follow instructions. During the once every two patients. Formatting errors while providing the diagnosis also
autonomous clinical decision making task, LLMs often introduce errors when regularly occur. Inthe clinic, extensive manual supervision would be required to
providing the next action to take and hallucinate non-existent tools, up to ensure proper performance.
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Extended Data Fig. 7| Small changes in instruction phrasing changes diagnostic accuracy. Often small changes in instructions, such as changing final diagnosis
to main diagnosis or primary diagnosis, greatly affects the performance of the LLMs on the MIMIC-CDM-FI dataset. This would vary the quality of responses received
depending on whois using the model.
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