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ABSTRACT: A major focus of academia, industry, and global governmental agencies is to develop and apply artificial intelligence
and other advanced analytical tools to transform health care delivery. The American Heart Associafti’vnﬁs;‘(gpports the creation
of tools and services that would further the science and practice of precision medicine by enabling'mote precise approaches
to cardiovascular and stroke research, prevention, and care of individuals and populations. Nevertheless, several challenges
exist, and few artificial intelligence tools have been shown to improve cardiovascular and stroke care sufficiently to be widely
adopted. This scientific statement outlines the current state of the art on the use of artificial intelligence algorithms and data
science in the diagnosis, classification, and treatment of cardiovascular disease. It also sets out to advance this mission,
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bias in clinical studies, and facilitate education and implementation science to improve cardiovascular and stroke outcomes.
Last, a key objective of this scientific statement is to further the field by identifying best practices, gaps, and challenges for
interested stakeholders.
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ent the state of the art on the use of artificial intel-

ligence (Al) or machine learning (ML) to enable
precision medicine and implementation science in car-
diovascular research and clinical care. For a primer on Al
and ML, please see the Supplemental Material.

This task has been propelled by academia, industry,
and global governmental agencies who are investing
immense resources to transform health care delivery
with Al, resulting in a rapid growth rate of scientific
research articles on health care—related Al research in
the past decade,' which is likely to accelerate in coming
years.

This work has led to several parallel initiatives, includ-
ing the digitization and analysis of electronic health

The objective of this scientific statement is to pres-

records (EHRs), to understand the heterogeneity of
treatment effects? the comparative effectiveness of
tests and interventions,® and, more recently, to build
prediction,* classification,® and optimization® models to
inform clinical decision-making (Figure).”®

Yet, despite enormous academic interest and indus-
try financing, Al-based tools, algorithms, and systems
of care have yet to improve patient outcomes at scale.
Therefore, another objective of this scientific statement
is to identify best practices, gaps, and challenges that
may improve the applicability of Al tools in each domain.
For each application, we will discuss the need to identify
and mitigate bias and ensure education and access to
Al/ML technologies by all stakeholders across diverse
health care settings.

Supplemental Material is available at https://www.ahajournals.org/doi/suppl/10.1161/CIR.0000000000001201
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Artificial Intelligence
in Heart Disease
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Figure. Artificial intelligence in heart disease.

IMAGING
Overview

Imaging has become an essential diagnostic tool in
clinical decision-making in cardiovascular diseases and
stroke.® However, expertise in image interpretation takes
years to acquire, and experts are often overburdened
with tasks such as image processing, segmentation,
quantitation, and interpretation.’®'" Moreover, expertise
in image interpretation is scarce, exacerbating inequities
in access to high-quality patient care in underresourced
areas, between lower and higher income populations,
and between low- and rich-resource countries. Al/ML-
based tools for imaging cardiovascular diseases and
stroke address many of these concerns and are there-
fore of increasing interest.™

Al/ML Application on Different Modalities in
Cardiac Diagnosis and Prognostication

Current-use cases of Al/ML algorithms in imaging are
broad and include referring and scheduling image acqui-
sition, image analysis including the reduction of image
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acquisition and processing times,'® reduction of radiation
exposure and contrast dose use, assisting in diagnosis
and reporting, with clinical decision support and with esti-
mation of patient prognosis.® These various Al applications
broadly apply to multimodal cardiac imaging and include
its use in echocardiography, cardiac CT, cardiac magnetic
resonance imaging (CMR), and nuclear imaging.

With echocardiography, applications include automated
segmentation and volumetric analysis of the cardiac
chambers along with ejection fraction (EF) calculation,
automated assessment of valvular structures, including
valve geometry and associated flow gradient and mea-
suring longitudinal strain and cardiac wall motion abnor-
malities."* Al/ML applications in echocardiography have
also been used for automated disease detection. Some
examples include its use in automated diagnosis of myo-
cardial infarction, differentiating hypertrophic cardiomy-
opathy from physiological hypertrophy, and in detecting
heart failure and pulmonary artery hypertension automati-
cally. These applications, when potentially combined with
handheld echocardiography, can provide high-quality car-
diac diagnosis in many places around the world that lack
such capabilities, thereby democratizing the expertise gap
that currently exists in cardiac diagnosis.

Cardiac CT (including CT anglography) is another
modality with increasing use of AleflJses include automated
quantification of coronary artery\:ﬂamaan and blood flow
and increasingly in cardiovascular risk assessment using
coronary artery calcium scoring. Automated quantification
of coronary plaque (both calcified and noncalcified) and
of coronary lumen on cardiac CT compares favorably with
manual measurements in multiple studies. In addition, car-
diac CT is being used to compute fractional flow reserve
and myocardial - perfusion.'”® With . cardiovascular risk
assessment using coronary artery calcium scoring gaining
increasing importance, Al applications are now capable of
automating the computing of coronary artery calcium scor-
ing from low-dose chest CT or even from nuclear imaging
studies, such as positron emission tomography CTs.

CMR applications of Al/ML include use in structural
and volumetric analysis of cardiac chambers and in esti-
mation of ventricular and myocardial blood flow and per-
fusion reserve.'® CMR is also being used for myocardial
tissue characterization and prediction of risk of sudden
cardiac death from ventricular late gadolinium CMR and
to help plan treatment strategies, such as guiding abla-
tion for ventricular tachycardia (VT) by analyzing patterns
of late gadolinium CMR indicative of fibrosis that may
indicate critical isthmuses for reentrant VT circuits."'®
CMR is also being used to assess ischemic stroke risk
from automated atrial chamber morphology and fibrosis
burden measurements.’

Nuclear imaging applications of Al are also increas-
ing with use in myocardial blood flow and flow reserve
quantification and associated prognostication of cardio-
vascular mortality.

Circulation. 2024;149:e00—e00. DOI: 10.1161/CIR.0000000000001201
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Al/ML in Cardiac Treatment Planning

Structural interventions are increasingly assisted by
Al/ML by using fast automated coronary vessel center-
line extractions or measuring stenosis for coronary in-
terventions, or by assessing dynamic mitral annulus, left
ventricular outflow tract, sinus of Valsalva, and sinotubu-
lar measurements for transcatheter aortic valve'® or mi-
tral valve replacement or patent foramen ovale closure.

Al/ML in Stroke Diagnosis, Prognostication,
and Treatment Planning

Al/ML has recently been used to facilitate the diagnosis
of acute stroke,'® by automatically detecting intracranial
hemorrhage on noncontrast CT of the head? Al/ML
applied to baseline CT angiography images of the head
are able to automatically detect large vessel occlusions,
reducing the time to successful neurovascular interven-
tion by 230 minutes.?' Al/ML applications on CT of the
head can automatically detect early ischemic changes of
the brain, without the need for diffusion-weighted MRI1.22
Al/ML algorithms have improved quantitation of CT or
MR brain perfusion imaging and enhanced their ability
to predict recovery of cerebral function during the time
taken to transport patients for reperfusion therapies.?®
Other applications include neurointerventional planning
for the management of acute ischemic stroke and ce-
rebral aneurysms, and for patient recruitment in clinical
trials for acute stroke.

Challenges in Applying AI/ML in Imaging

Key limitations specific to imaging include appropriate
data sourcing, curating, and sharing (Table 1). Imaging
data from clinical repositories are difficult to obtain and,
when available, are often unstructured and unlabeled. Us-
ing appropriate learning techniques (eg, supervised learn-
ing when labeled data are available during training versus
unsupervised learning when labeled data are difficult to
come by or expensive to procure) is important. Additional
techniques, such as transfer learning where pretrained
models are applied to a new classification task, weak su-
pervision when available data are imprecisely labeled, and
a hybrid semisupervised learning approach when some
data are appropriately labeled while the majority of data
are not, may be considered in applying the appropriate
Al/ML approach to the available data. A recently published
11-point framework/checklist provides guidance that in-
cludes defining the research question, choosing an appro-
priate ML/deep learning model for each type of problem,
defining a priori sample size and study design, including
the nature and type of training, validation, and test datas-
ets, reporting on the reliability of data labeling and annota-
tions especially in the reference datasets, and appropriate
reporting of results using accepted statistical measures.'

Circulation. 2024;149:e00—e00. DOI: 10.1161/CIR.0000000000001201
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Tools such as the recently developed medical imaging
data readiness scale can help to structure imaging data
for developing ML/deep learning algorithms.?* Applying
the Findability, Accessibility, Interoperability, and Reuse
of digital assets (FAIR) framework to curate imaging data
and storing it using formats like the Neuroimaging Infor-
matics Technology Initiative data format for segmenta-
tions will help with reuse of this scarce resource among
multiple research groups.®

For issues pertaining to data privacy, and ethical and
legal challenges, techniques such as “federated learning”
may accelerate algorithm development by enabling a col-
laborator to download a developed Al/ML tool for use on
their local data.

ELECTROCARDIOGRAPHY

Overview

The application of Al/ML to the ECG has already dra-
matically affected electrocardiography?62° First, by
automating interpretation, human capabilities can be
massively scaled, enabling interpretation of an expo-
nentially growing number of ECGs.?® Second, Al/ML
algorithms can identify subtle and interrelated nonlinear
patterns in the ECG often not pecognizable to experts,
enhancing disease phenotypiné;@TEg}zggopecause cardiac
electrical activity may be affected before mechanical or
structural abnormalities are evident on imaging, such al-
gorithms may enable the identification of occult disease
andprediction- of impending disease. By segregating
subtypes of similar conditions, Al/ML of the ECG may
reveal novel phenotypes.

Al/ML to Scale Current Expert Capabilities

Several studies have shown that Al/ML can scale cur-
rent expert capabilities. The growing need for ECG inter-
pretation, coupled with the limited skills and availability
of human experts,®" motivates efforts for automated and
accurate interpretation of ECGs. Rules-based interpreta-
tion of the ECG is widely used in existing devices, yet has
known limitations® that may adversely affect medical
decision-making.® In early studies, Al/ML algorithms
may better mimic expert interpretation,® yet their wide-
spread adoption and clinical data are currently lacking.

Al/ML to Read ECGs Beyond Trained Experts

Application of Al/ML on the ECG appears effective in de-
tecting occult structural heart disease up to 1 to 2 years
earlier than traditional testing. In retrospective studies, in-
dependent groups report that Al of the ECG can identify
left ventricular dysfunction in diverse populations?”3® irre-
spective of sex, race, or ethnicity,®® from diverse causes,
including peripartum cardiomyopathy.?”37 A prospective,
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Table 1. Artificial Intelligence in Imaging

Best practices Description

Clinical problem addressed with imaging is defined in consultation
with clinical experts, Al/ML experts, and experts in ethics and patient
engagement

Universal clinical adoption of Al/ML-based imaging tools needs proper definition of the
clinical problem and needs alongside consideration of ethical issues with such use of
these tools as well as a patient’s perspective on the utility and effect of these tools.

Study design, methods, and resultant AlI/ML techniques used in
developing imaging solutions are defined a priori

Formulation of a priori hypothesis, study aims, and objectives and appropriate study
designs and reporting measures are key when assessing algorithm quality and validity.
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Data annotation uses well-defined rules (eg, medical imaging data readiness [MIDaR]
and Findability, Accessibility, Interoperability, and Reusability [FAIR] principles) that also
takes into consideration interrater variability.

Imaging data are adequate, representative, well characterized, and
reusable

Gaps and challenges Description

Define disease states for which Al/ML-based image classification is
validated

Diagnostic accuracy reflects pathophysiology, patient demographics, or technical
issues with respect to data representation (ie, bias and lack of generalizability).

Identify imaging systems that may detect stroke Al/ML-based and computational imaging algorithms may predict stroke, using diverse

¥202 ‘T yore \ uo Aq Bio'sfeuno feye//:dny wouy papeojumoq

imaging modalities such as cardiac MR, strain, or nuclear imaging.

Lack of representative imaging data sets

Imaging data from clinical repositories may have class imbalances and other biases
(eg, data coming from highly selected centers).

Lack of studies that test effect on clinical outcomes

Most Al/ML algorithms have been tested on retrospective data, with minimal
prospective practical clinical workflow development and testing demonstrating utility.

Al indicates artificial intelligence; ML, machine learning; and MRI, magnetic resonance imaging.

pragmatic trial of Al/ML applied to the ECG in >20000
patients without previous heart failure in primary care clin-
ics in Minnesota and Wisconsin improved first detection
of ventricular dysfunction by 32% over usual care (area
under the curve [AUC]=0.92; A<0.007).38 Similar results
were reported in the United Kingdom by a stethoscope-
based ECG with a similar algorithm compared prospec-
tively with usual care®® Al/ML of the ECG can identify
other structural heart disease, including hypertrophic car-
diomyopathy,® amyloid heart disease,*' aortic stenosis,*!
and pulmonary hypertension.”? Detecting hypertrophic
cardiomyopathy by Al/ML of the ECG can also guide
strategies to improve outcomes.*®

In 36280 patients in sinus rhythm (of whom 8.4%
had known paroxysmal atrial fibrillation [AF]), Attia et al*”
reported that a single-lead ECG had an AUC for identify-
ing silent AF of 0.87 (95% Cl, 0.86—-0.88). Other studies
support these findings.***% It remains to be determined if
such Al/ML tools can be combined with other P-wave
metrics that predict AR The role of the AI/ML in pre-
dicting stroke from ECGs in sinus rhythm is less well
defined.?”

Al/ML on Electrocardiographic Phenotyping

Attia et al*” applied Al/ML on ECG to predict sex and bi-
ological age (an indicator of health) in 275056 patients
(52% male). The Al/ML algorithm provided 90.4% ac-
curacy for identifying sex, with AUC 0.97. Age estimates
fell within 6.91£b.6 years of chronological age and, in-
triguingly, patients in whom Al/ML-based prediction of
age exceeded chronological age by >7 years had fac-
tors of “advanced biological age,” such as low ejection
fraction (left ventricular EF), hypertension, and coronary
disease.*®

ed TBD TBD, 2024

Challenges in the Clinical Application of Al/ML
on ECG

Robust clinical validation in large diverse populations
that minimizes bias is essential to address uncertain-
ties,* such as automation bias;wulnerability to adver-
sarial attacks (ie, imperceptible‘data sy cause Al/ML
misclassification), and overfitting (ie, poor generalizabil-
ity), which reduce clinical acceptance and adoption*®
(Table 2). Hybrid approaches during model develop-
ment that combine domain- and data-driven knowledge,
clinician familiarity with AI/ML, and “stress testing” of
electrocardiographic  algorithms may also increase
adoption.®98" Last, the limited availability of digitized
and well-labeled electrocardiographic data and open-
source datasets may limit research and development
of Al/ML algorithms.>? The AUC is frequently reported
to describe Al/ML model performance, but the optimal
statistical metrics or combination of metrics to assess
the performance of this new class of tests is not yet
defined.

IN-HOSPITAL MONITORING
Overview

Bedside monitoring has been a standard of care for
decades. Traditional systems apply expert static rules
to generate an alarm once a vital sign exceeds a given
threshold. However, assigning scores to individual vital
signs heuristically and ignoring potential covariance be-
tween different physiological signals®® has contributed
to the modest accuracy of these systems. Application of
Al/ML on streaming physiological signals from bedside
monitors®' provides tools to harvest subtle signatures

Circulation. 2024;149:e00—e00. DOI: 10.1161/CIR.0000000000001201
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Table 2. Electrocardiography

Use of Al'in Improving Outcomes in Heart Disease

Best practices

Description

The acquisition environment of ECGs used to train
Al/ML should match those used clinically

Electrocardiographic signals are affected by body position, lead placement, motion, and signal
processing issues such as sampling rate and dynamic range.

Accounting of bias enables generalization of results to
diverse populations

Different populations show different “normal” electrocardiographic features. These factors should be
incorporated into AI/ML models to ensure generalizability.

Al/ML algorithms must be tested in independent,
external cohorts

Al/ML algorithm generalizability is ensured by their testing on data structures other than the ones
in which they were created, considering different populations, equipment, and clinical workflows.

Gaps and challenges

Description

Develop a robust framework to apply Al/ML algorithms
for scenarios that appear superficially similar but differ in
important respects

Some Al/ML algorithms work well across different clinical scenarios, yet others do not (eg,

an algorithm applied on ECG to detect AF in outpatients may not apply to postoperative AF).
On the other hand, ECG-based Al/ML algorithms can detect ventricular dysfunction irrespective
of mechanism.

Clinical outcome data are limited

Development and testing of practical workflows that integrate AI/ML ECG-based algorithms may
demonstrate real-world utility.

Develop a framework to address the consistency of
ground truth labels.

Accurate ground-truth labels are needed for Al/ML algorithm training. Tools to rapidly generate
labels, such as natural language processing, may be prone to errors. Semisupervised models are

still in the research phase.

AF indicates atrial fibrillation; Al, artificial intelligence; and ML, machine learning.

across simultaneously acquired vital sign signals, which
holds significant promise in improving outcomes.

False Alarm Reduction

Only 5% to 13% of alarms from bedside monitors are
actionable, whereas the remaining 87% to 95% may ac-
tually distract clinicians and compromise patient safety.>*
Applications of Al/ML on in-hospital monitors has been
shown to increase the accuracy of alarms, improving pa-
tient outcomes and allocation of resources.®® Convolu-
tional neural networks (CNNs) applied on intensive care
unit (ICU) vital-sign data could differentiate true from
false monitor alarms,®? thus reducing alarm fatigue.

Clinical Deterioration

Al/ML models applied to bedside monitors can detect
worsening of heart failure®® and decompensation,®™® in
ICU and emergency department settings. These models
can detect subtle physiological signatures before clini-
cal deterioration, broadening the diagnostic and thera-
peutic window for early intervention.®® Al/ML systems
have been shown to improve accuracy over traditional
diagnostic systems, although with a broad range of ac-
curacy.%® Prospective studies on the clinical validation of
Al models for forecasting clinical deterioration are impor-
tant, yet are relatively sparse.

Sepsis and Hypotension

Several studies have used Al/ML algorithms for the early
detection of sepsis®'~%% and hypotension,5*6° with high ac-
curacy, 3 to 40 hours ahead of traditional approaches. In a
meta-analysis of 36 studies including 6 randomized con-
trolled trials, Al/ML-based prediction of sepsis coupled

Circulation. 2024;149:e00—e00. DOI: 10.1161/CIR.0000000000001201

with early intervention may reduce mortality rate (rela-
tive risk, 0.566 [95% Cl, 0.39-0.80]) more effectively than
alternative strategies.®® The beneficial effect of Al/ML
predictions was higher in the emergency department and
general wards, where patients are less frequently moni-
tored, than in the ICU. This has important implications for
deploying such systems in clinig é*pm@h’ce.

Association.

Cardiac Arrest

Al/ML tools may predict impending in-hospital cardiac
arrest and enable early intervention. However, at the
present time, most proof-of-concept studies have been
retrospective. An Extreme Gradient Boosting—based
model using heart rate and respiratory rate data pre-
dicted VT 1 hour before its onset with sensitivity and
specificity >0.80,5" using ECG, noninvasive blood pres-
sure, and percutaneous oxygen saturation (Pao,)®
Hidden Markov and Gaussian mixture models predicted
imminent ventricular fibrillation (VF), from =5 minutes to
6 hours before onset with accuracies of 0.83 to 0.94.55™
In the pediatric ICU, AlI/ML predicted cardiac arrest up to
50 minutes before onset in 91% of patients, compared
with only 6% by clinicians, albeit with modest positive
predictive value (0.11). Thus, although Al/ML algo-
rithms may predict imminent ventricular arrhythmias in
reference datasets, prospective validation and testing are
urgently required.

Atrial Fibrillation

Several Al/ML applications can detect AF in the acute
care setting.” In 6040 patients in the well-described
MIMIC-III (Medical Information Mart for Intensive Care)
database of patients undergoing cardiac surgery, Al/ML
tools predicted postoperative AF a major cause of
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delayed discharge and morbidity, with AUCs of 0.59 to
0.74 that were better than standard clinical scores. In this
study, saliency analysis was used to provide personalized
risk profiles for each patient™ which may improve man-
agement and shed mechanistic insights. Al/ML has been
shown to predict in-hospital stroke/transient ischemic at-
tack and major bleeding in critically ill patients with pre-
existing AF from EHRs with an AUC of 0.931 for stroke/
transient ischemic attack, and 0.93 for major bleeding.”

Drug-Related Proarrhythmia

A common cause for admission to acute care settings is
to monitor risk of proarrhythmia from medications. Sev-
eral studies now report that QTc duration is accurately
estimated by Al/ML of the ECG, including electrocar-
diographic data from smartphone-based systems (some
with US Food and Drug Administration [FDA] approval
for QT measurement™), although clinical experience is
limited.” For drug discovery, an Al/ML model termed
deepHerg predicted if a specific agent blocks the hERG
potassium channel and provided a c-statistic of 0.967
for torsades de pointes, while it revealed that 29.6% of
1824 of the FDA-approved drugs may inhibit hERG.™
Other Al/ML systems can predict 70.3% of drugs that
are known to cause torsades.” A computational “atom
to rhythm” pipeline that combines Al/ML with computer
models of drug structure was able to infer channel bind-
ing and hERG block from drugs such as dofetilide and
moxifloxacin® Several Al/ML models have been re-
ported to predict proarrhythmia from drugs that block the
delayed rectifier, L-type calcium, and late sodium chan-
nels.%8" Nevertheless, the clinical actionability of such
approaches remains undetermined.

Perioperative Risk Assessment

Application of Al/ML on large numbers of discrete vari-
ables or physiological inputs may be superior to clinical
risk scores for assessing perioperative risk.?? In patients
undergoing valve or bypass surgery, application of CNNs
to the ECG to screen for ventricular dysfunction predict-
ed long-term mortality of inpatients (with EF>350%).8
Intraoperatively, AI/ML applied to the electroencepha-
logram revealed spectral features that can assess the
depth of anesthesia, guide anesthetic drug dosing, and
potentially mitigate postoperative delirium.84€ Al/ML of
other intraoperative variables may also predict hypoten-
sion, arrhythmias, and hypoxemia minutes before oc-
currence® whereas reinforcement learing algorithms
have been used to manage complex control rules to en-
able continuous anesthetic dosing in synthetic models.®”
Al/ML systems able to reliably predict perioperative
complications and mortality from various surgical proce-
dures could dramatically improve patient selection, clini-
cal trial design, and informed consent.

eb TBD TBD, 2024
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Challenges on the Use of Al/ML in In-Hospital
Monitoring

A major challenge to current Al/ML-based monitoring
systems is the lack of rigorous prospective evaluation.
Moreover, few studies have been shown to affect clini-
cal end points such as mortality,?8°° or make predic-
tions that could directly inform clinical decision-making.
Although some studies reported dramatic reductions
in mortality,®%? such effects could reflect altered be-
havior in individuals being monitored (the Hawthorne
effect), as revealed from the algorithm use during the
COVID-19 pandemic.23°* Al/ML tools may also be lim-
ited in practice by the a lack of standardized platforms
to report predictions to clinicians® and noise in ambula-
tory data,®® with some studies reporting that valid data
are present for as little as half of the monitoring time.%®
Solutions may involve deriving more informative time-
varying metrics for longer periods of time® and the
adoption of best practices for designing trial protocols,
as well (Table 3).

IMPLANTABLE AND WEARABLE
TECHNOLOGIES

Overview

The ability to interpret physio\logical data on a near
continuous basis may provide unprecedented data on
disease progression, new time points for intervention,
and redefine the boundary between inpatient and out-
patient care.?® This technology also has the potential to
reduce disparities of care.® An important unaddressed
theme is to identify those patients and disease types
most amenable for Al/ML-enabled monitoring, and to
develop and validate practical pathways of care for
each.

Device Types

Consumer wearables may or may not contain FDA-
cleared components,*® and may differin the types of signal
captured, signal processing, data security and gover-
nance, level of clinical validation, and data integration into
medical records. There are several forms of FDA-cleared
implanted devices.**8 The efficacy and utility of each de-
vice depends on its form factor, sensor type, anatomical
placement, and analytics, including noise reduction and
interpretation algorithms.

Motion detection is important because inactivity is
associated with adverse cardiovascular outcomes and
mortality and because activity provides a context for
physiological signals. Motion sensors use piezoresistive,
piezoelectric, or differential capacitive accelerometers to
record linear acceleration in 3 planes and process it on
the basis of anatomical locations to identify motion,'®

Circulation. 2024;149:e00—e00. DOI: 10.1161/CIR.0000000000001201
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Table 3. In-Hospital Monitoring

Use of Al'in Improving Outcomes in Heart Disease

Best practices

Description

Al/ML algorithms track cardiovascular status from
in-hospital monitoring

Development of in-hospital electronic monitoring which is integrated with other technologies may predict
events such as cardiac arrest, heart failure, AF, and stroke.

Al/ML algorithms may identify conditions such as
sepsis, hemorrhage, delirium, and overall clinical
deterioration

Al/ML-based algorithms may provide early warning for many types of clinical deterioration, each of which
may need different integrated workflows.

Al/ML algorithms reduce alarm fatigue among staff

Alarm fatigue is a major issue in ICU settings. Al/ML algorithms may reduce excessive alarms that result
from current rule-based systems.

Al/ML algorithms improve allocation of services and
resources

Use of AI/ML of in-hospital data streams may improve allocation of resources.

Al/ML algorithms for in-hospital use assist in
procedures

Procedures may be improved by Al/ML methods, such as robotic surgery.

Gaps and challenges

Description

Translation performance of predictive AI/ML
algorithms across centers

Al/ML-based alerting algorithms exhibit robust performance when tested across institutions and places
that reflect differences in clinical settings or study designs.

Identification of patients, conditions where
monitoring may improve outcomes

It is unclear which patients benefit from automated alerting systems, and if that affects disparities in
in-hospital outcomes.

Evaluation of the effect of alarms across conditions
and patient groups

Limited evaluation has been performed on the effect of false positive triggers and their reduction on
clinician workload and health system cost.

Acceleration and scaling annotation of in-hospital
monitoring data

Because the annotation of in-hospital monitoring data is labor intensive, and complicated by noise
and artifacts, the limited availability of large, well-labeled datasets hampers progress. Open-source
data sets may be noise free and not representative. New techniques (eg, semisupervised ML)

may be effective.

Real-time operation of alert triggering Al/ML
algorithms, across hospital settings

Few hospitals have pipelines that integrate physiological monitoring with other systems, which may
widen the gap between safety net and high cost among hospitals.
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AF indicates atrial fibrillation; Al, artificial intelligence; ICU, intensive care unit; and ML, machine learning.
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corresponding to sleep, steps, or activity.'”" The wrist-
watch is commonly used, but ankle recordings are supe-
rior for step counting. Global positioning system data
can augment analysis for outdoor activities, and micro-
electromechanical barometers can sense changes in
elevation to detect activities such as stairs climbed or
a fall.?® Other form factors include chest patches, chest
straps, wearable garments with embedded sensors,
smart phones, and head-mounted devices.®®

Photoplethysmography (PPG) or ECG-based
devices can both detect heart rate or rhythm. ECG-
based devices are considered the gold standard for
rhythm diagnosis. Chest strap devices can record the
ECG but are less well-tolerated than watches that typi-
cally record a pseudo lead | between 1 finger on the
crown and the watch base.’? Smart watches have been
used in small and large studies with >400 000 partici-
pants’® to screen for AF with positive predictive values
from 84% to 99%. PPGs require good skin contact and
may be adversely affected by tattoos and darker skin
tones.'” PPG-based devices can detect arrhythmias
such as AF but may be sensitive to movement arti-
facts.’0®

Additional sensors in wearables include acoustic sen-
sors to provide a phonocardiogram and skin-impedance
sensors for use in garments.®® Sensors in implantable
devices can detect impedance to electrical current to
quantify pulmonary congestion (which reduces thoracic
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Association.

impedance) and direct pressure sensors (eg, pulmonary
artery) for heart failure management.®

Detection of Near-Term Atrial Fibrillation

There is a substantial literature that AF can be detected
by Al-enabled PPG=based devices including the Apple
Heart study (Assessment of Wristwatch-Based Pho-
toplethysmography to Identify Cardiac Arrhythmias),'®®
WATCH-AF trial (Smartwatches for Detection of Atrial
Fibrillation),’°® and others.'® In 91 232 annotated ambu-
latory patch ECGs from 53549 patients, Hannun et al'®
used Al/ML to ECG-based devices to detect 12 rhythm
classes with an F1 score superior to cardiologists (0.837
versus 0.78). Adding smartphone accelerometry'®® or gy-
roscope'”” data (to measure chest micromovements of
cardiac motion) may push the accuracy for AF detection
>900%. Mobile devices can also detect VT/VF. Al/ML
applied to 3 public ECG databases provided an accu-
racy of 96.3%.'%° As described above, Al/ML applied to
electrocardiographic and other vital sign data can predict
imminent ventricular arrhythmias.®8"!

Blood pressure can be estimated from PPG
devices®'° by using Al/ML. Key indices are the pulse
transit time, which is the time that the pulse takes to
travel between 2 arterial sites, and pulse arrival time,
which refers to the time between the ECG R wave and
the peak of the PPG signal (the pulse wave). The pulse

TBD TBD, 2024 e7
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transit time can be found either by using a single-source
PPG and the electrocardiographic signal, or using PPG
signals from 2 sensors at different locations. Pulse arrival
time requires both the PPG and electrocardiographic
signals.

Monitors can increasingly measure numerous indices
of cardiovascular disease and health."'° To guide manage-
ment of patients with heart failure (HF), the multicenter
LINK-HF study (Multisensor Non-Invasive Telemonitoring
System for Prediction of Heart Failure Exacerbation)'"
applied Al/ML to a smartphone-accessed wearable
multisensor chest patch and detected HF exacerbation
and impending rehospitalization with sensitivities of up
to 88% and specificities of up to 85%. Although some
studies show improved clinical utility over conventional
care, others show no improvement.'

Implantable devices provide monitoring data that can
also improve cardiovascular care. This includes AF man-
agement using data from implanted arrhythmia monitors,
pacemakers, or defibrillators,®® and management of HF
using data from implanted pressure monitoring (but not
impedance monitoring).''®

In general, prospective studies are needed not only
to further establish the accuracy and generalizability of
such approaches, but also their translation to actionable
care pathways that can demonstrate clinical utility.

Challenges in Applying Al/ML in Mobile and
Wearable Technologies

The form factor of wearables affects signal-quality or pa-
tient comfort, and this must be taken into account when
comparing devices. Al/ML of mobile device data opens
specific ethical issues; because data are owned by pa-
tients, yet data privacy, operability, and integrity’* must

Table 4. Implantable and Wearable Technologies

Use of Al'in Improving Outcomes in Heart Disease

be maintained among all stakeholders'™® (Table 4). Reg-
ulatory pathways must be developed for Al/ML-enabled
wearable and implantable devices in the United States.''®
However, a greater scientific knowledge base is also re-
quired. Prospectively collected data, clinical trials, and
development of workflows are urgently needed. For ex-
ample, a notable recent study showed that AF diagnosed
by wearables could be confirmed by cardiologists in only
34% to 65% of cases,''” and >90% of alerts did not
lead to clinically actionable diagnoses.'® In terms of ac-
ceptance, 35% of clinicians in a recent survey stated that
they would refuse to integrate Al/ML-enabled wearables
in their care and 11% considered them “a great dan-
ger"'® Heterogeneity exists in how AF is labeled in vari-
ous Al/ML-based systems. It remains to be determined
if acceptance will improve as clinicians and patients be-
come more familiar with such technology.

GENETICS

Overview

The development of high-throughput DNA-sequencing
technologies over the past decade has provided the
means to generate large-scale genomic data well
suited for Al/ML. The ability tosgenerate 3 billion nu-
cleotides uniquely arranged fija isingle individual in
just 24 hours, coupled with the generation of these
data collectively from >1 million individuals involved in
government-funded DNA-sequencing projects,’® has
made-available large volumes of human genomic data
that is 4% non-European.! These initiatives, integrated
with longitudinal phenotypic information and lifestyle be-
haviors, provide the training datasets necessary to robust-
ly predict future risk of disease in individuals of European

Best practices Description

Identification of disease states and patient types in whom
wearable technologies can provide hospital grade information

Identification of the accuracy of each application may result in some applications converting
in-patient to “at-home hospital” monitoring.

Identification of disease states and patients in whom
implanted devices are preferable

Certain scenarios may be better served by implanted devices, such as patients with existing
pacemakers and defibrillators at risk for serious adverse outcomes.

Definition of states of wellness that can be tracked by
wearable devices

Tracking and maintaining some states of wellness may effectively prevent transition to disease.

Gaps and challenges

Description

Interoperability standards between devices and electronic
health systems

Data ownership needs to be defined, while interoperability standards enable data sharing and
auditing between stakeholders, thus reducing barriers for third-party firms to innovate.

Definition of new sensor reference standards for key
cardiovascular metrics

Not all sensors are equally accurate across clinical scenarios.

Identification of robust, disease-based applications for each
device

Clinical trials may reveal differential accuracy among devices across populations (eg, atrial
fibrillation screening for an older patient versus a young athlete).

Cost-effectiveness, implementation, ethics, privacy, and safety

Effect assessment of wearable and implantable devices on resource utilization, costs, and
clinical outcomes.

Evolution of regulatory boundaries

Establishment of regulatory approaches between different groups, even for the same disease.

e8 TBD TBD, 2024
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ancestry and open a new era of surveillance and poten-
tial intervention for both rare and common diseases, re-
defining cardiovascular prevention.

Al/ML in Genome-Wide Association Studies

Genome-wide association studies (GWAS) seek to
find statistical associations between genetic variants
and health-related traits in populations.'” GWAS use
relatively common (>1% minor allele frequency) single-
nucleotide polymorphisms (SNPs) at up to >4 million loci
in the genome to identify health-related associations.'*
The NHGRI-EBI GWAS study catalog (a collaboration
between the National Human Genome Research Insti-
tute [NHGRI] and the European Bioinformatics Institute
[EBI] to create a publicly available resource of GWAS
studies and their results) contains findings from near-
ly 6000 publications reporting =420000 genotype-
phenotype associations that met some nominal level of
significance.'”” GWAS data have been used in meta-
analyses, pathway analyses, and in the construction of
polygenic risk scores; these approaches have sometimes
offered insights into disease biology, prompted drug de-
velopment, and improved risk stratification.'2>'2¢

Al/ML using GWAS data to identify variants for risk
classification of cardiovascular disease is in its devel-
opmental phase. As an illustrative proof of concept, Jo
et al'® used CNNs to identify SNPs associated with
Alzheimer disease in a 3-step process. First, they divided
the whole genome into nonoverlapping, optimally sized
fragments, then applied CNNs to each fragment to iden-
tify Alzheimer disease—associated fragments. Second,
they used deep learning to generate a “phenotype influ-
ence score” for. each SNP.in the most highly associated
fragments to identify Alzheimer disease—associated
SNPs. Third, they used deep learning with the most highly
associated SNPs from step 2 to develop a classification
model. This approach identified significant SNPs that
differed from those identified using a standard GWAS
method,"?” although both approaches implicated similar
regions of the genome (coding Apoprotein E).

Extending Polygenic Risk Scores

GWAS data are most frequently used to characterize uni-
variate associations between traits of interest and indi-
vidual variants, which can be used to construct polygenic
risk scores (PRS). However, PRS often explain only a
small percentage of the variance in a phenotype, poten-
tially because they do not account for interactions among
SNPs or for nonlinearities in variant trait associations.
Elgart et al'®” sought to overcome these limitations by us-
ing data from a multiethnic genomic dataset of *29 000
individuals with an ensemble method of SNP selection
followed by a gradient-boosting Al/ML technique (XG-
Boost) to identify 9 complex phenotypes. Compared with
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the standard, linear PRS, the Al/ML approach resulted
in relative increases in explained variance in phenotypes
ranging from 22% (height) to 100% (diastolic blood
pressure). The multiancestry-trained Al/ML models per-
formed as well as racial and ethnic group—trained models
and better than standard linear PRS models. Leveraging
Al/ML (such as from XGBoost) to integrate enhanced
PRS with clinical information from EHR holds promise to
advance the application and implementation of precision
medicine in cardiovascular disease.

Ancestry Characterization

Stratification may be necessary to produce meaningful
genotype-phenotype associations. Panels of autosomal
ancestry-informative SNPs historically have been used
for this purpose but sometimes with crude resolution. For
example, some methods create a single East Asian racial
group despite known genetic differences in subgroups.
Al/ML approaches may enable the creation of ancestry-
informative SNP panels with higher-resolution ancestry
inferences. Gu et al'?® applied ML methods (Softmax,
Random Forest) to screen a candidate panel of 1185
ancestry-informative SNPs (collected from 13 previously
published panels) to develop an optimized classification
model that used 272 SNPs to distinguish Northern Han,
Southern Han, Korean, and Jaganese.individuals. Their
ancestry-informative SNP panel correctly classified indi-
viduals to the 4 East Asian groups with >90% accuracy.

Phenotype to Gene Identification

There is an emerging use of Al/ML in a “reverse direc-
tion;" applied to phenotypes to predict genetic conditions.
DeepGestalt, an Al/ML-based facial image analysis al-
gorithm, has been shown to be superior to experts in
identifying monogenic genetic syndromes with facial
anomalies, including several cardiovascular diseases
and correctly prioritizing pathogenic genetic variants.™®
This deep learning model can accurately distinguish dis-
tinct genetic subtypes of Noonan syndrome.’° Likewise,
deep learning models have been suggested to outper-
form cardiologists in detecting long QT syndrome from
electrocardiographic analysis, and potentially distinguish
between the common genetic causes of long QT syn-
drome (LQT1-KCNQ1, LOT2-KCNHZ2, LQT3-SCNbA)."®!

Determining the Clinical Relevance of Genetic
Variants

More than 6000 genetic variants are now implicated as
Mendelian causes of human disease, yet the vast majority
of observed genetic changes are classified as variants of
uncertain significance. AIl/ML has been applied to assist
in more confidently classifying the benign or deleterious
nature of variants of uncertain significance. The Combined

TBD TBD, 2024 e9

(]
=
==
=+
[—)
=
& —
Erﬁ
(=]
m =5
_m
==
mm
D=
-
o




AND GUIDELINES

(2]
—
—
L
=
=
=
o
-
=T
(]
—
=
(-]

¥202 ‘T yore \ uo Aq Bio'sfeuno feye//:dny wouy papeojumoq

Armoundas et al

Annotation Dependent Depletion approach uses Al/ML
that integrates multiple data sources to predict variant
pathogenicity (eg, evolutionary conservation and function-
al predictions from the variant). Deep learning that builds
on Combined Annotation Dependent Depletion can en-
hance classification accuracy compared with non-Al/ML
models.’®? PrimateAl, a uniquely trained deep CNN based
merely on DNA or protein sequence from data of >100000
human sequence alignments, has shown promise in ac-
curately classifying variants of uncertain significance.'®®
Extensions of such Al/ML-based models may improve
the prioritization of variants and candidate genes identified
through unbiased gene discovery methods such as whole
exome sequencing, whole genomic sequencing, or GWAS
in patients and cohorts with gene-elusive disease.'**

Challenges in Applying Al/ML in Genetics

It is important to note that, although Al/ML models are
making significant progress in enhancing variantinterpre-
tation, their use as a definitive classification tool still re-
quires caution (Table B). As with all deep learning models,
those used in genomics require training on human-
derived data which itself is prone to errors and inaccu-
racies. Although optimism remains high that Al/ML will
accelerate the discoveries of complex interactions that
will inform future prevention and treatment efforts, in the
cardiovascular domain, we are currently at the bottom of
a steep hill with many steps to make to reach the summit.
Step by step, Al/ML will evolve to affect our understand-
ing of human genomic data in relation to cardiovascular
disease prevention and treatment.

Al/ML IN INTERPRETING EHRs
Overview

In principle, appropriate analysis of the EHR could improve
disease detection, stratify patients into treatable disease
types (novel “phenotypes”), and identify novel clinical work-
flows. Randomized controlled trials evaluate 1 treatment at

Table 5. Genetics

Use of Al'in Improving Outcomes in Heart Disease

a time and at a single time point, typically at the time of
enroliment, and provide an average treatment effect across
a heterogeneous cohort of patients. On the other hand,
Al/ML applied to EHR could simulate sequential decision-
making at different time points, enrolling every patient who
has been treated or not treated, with little exclusion criteria
and with less patient dropout® Several EHR-based appli-
cations have been described, although most have not been
generalized outside their development cohorts.

Predicting In-Hospital Mortality

In a review of 21 studies using elements from the EHR,
Al/ML achieved an accuracy of =0.86 for predicting
mortality in the ICU.™® The Super ICU Learner Algorithm
(SICULA) used 17 static variables to achieve an AUC of
0.94 (95% Cl, 0.90-0.98) for predicting mortality in a
test population.'®® Al/ML applied to clinical features in
217289 ICU patients predicted 30-day mortality with an
AUC of 0.89, improving on the Simplified Acute Physiol-
ogy Score-3 with AUC 0.85."%7

Predicting General Cardiovascular Outcomes

Several models have been trained on large numbers
of variables from the EHR. Zhag et al'*® reported bet-
ter prediction of cardiovascularf:iav;%fﬁﬁmat 10 years in
109490 individuals from their HER-based Al/ML tool
than from the American College of Cardiology/American
Heart Association pooled cohort risk equation. In 7686
patients, analysis of 1000 variables, from the EHR, pre-
dicted major adverse cardiovascular and cerebrovascular
events with an AUC of 0.81 (95% Cl, 0.80—0.83).

Predicting Specific Cardiovascular Disease

Al/ML applied to EHR chart data has been reported to pre-
dict impending HF rehospitalization better than individual
cardiologists.'? Ye et al'®® developed an XGBoost-based
Al/ML risk prediction model for incident hypertension
in 823627 patients, which provided an AUC of 0.870 for

Best practices

Description

Al/ML algorithms predict common cardiovascular disease
(coronary artery disease, diabetes, hypertension, arrhythmia)
using personal genomics

Effective preventive medicine and clinical surveillance may be used to
decrease cardiovascular disease morbidity and mortality for large, at-risk
populations.

Al/ML algorithm-based identification of monogenic causes of cardiovascular
disease, for targeted drug development

Discovery of genes that cause cardiovascular disease identify potential targets
for highly efficacious novel drug therapies (eg, statin drugs).

Al/ML algorithm-based classification improvement for predicting rare genetic
variants as benign or pathogenic

Targeted genetic testing in clinical genetics is fraught with the frequent
observation of genetic variants of uncertain relevance.

Gaps and challenges

Description

Implementation of universal standards to clinically translate genomic Al/ML
algorithms

Al/ML-based models must be validated and robust in prediction for routine use
in clinical genetics.

Alindicates artificial intelligence; and ML, machine learning.
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incident primary hypertension within 1 year in 680810 pa-
tients studied prospectively. Guan et al'*® used EHR to de-
fine features of ischemic stroke in 1598 patients from the
Massachusetts General Hospital Ischemic Stroke Registry
and found that the best model had 92.2% accuracy with
AUC of 0911 (95% ClI, 87.5-93.9). Predictors were AF,
age, cardiomyopathy, HF, patent foramen ovale, mitral an-
nulus calcification, and recent myocardial infarction.

Disease Classification

Although existing disease phenotypes have often been
based on readily available data using traditional grouping
elements, Al/ML provides an opportunity to better char-
acterize disease types by integrating several, often com-
plex data categories. In addition to nuanced definitions
of HF beyond conventional classification of HF with re-
duced EF and HF with preserved EF, Al/ML-based phe-
notypes are increasingly reported to integrate multimodal
data to identify patients at risk for adverse outcomes from
HF,'%8 at heightened risk for sudden cardiac arrest,'s'*! or
with AF who are more likely to respond to ablation.'#2143

Challenges in Applying Al/ML in EHR

EHR data are only as good as their curation and consis-
tency. Raw EHR data are extracted from different informa-
tion systems and must be linked and prepared for analysis
by individuals familiar with local practice patterns (Table 6).
This may introduce variation in"data collection compared
with centralized clinical trials.'** EHR analysis-introduces
several potential biases. For example, the likelihood of an
abnormal measure correlates strongly with frequency of
measurement, which in turn reflects the severity of illness
because clinicians order more tests in unstable patients.
Hence, “routinely” collected data implicitly encode clinician
judgment that may be highly variable across clinicians.'*®
Sampling biases may lead to spurious associations unless
input is obtained from domain experts.'*® For example,
when analyzing EHR data from the hospital, modeling is
affected by the criteria for admission, which vary from 1
facility to another, and even within the same hospital at
different times.'*” Treatment administration is subject to
differences in inter- and intraclinician decision-making.
EHRs often lack relevant social determinants for treat-
ment and other confounding variables. In addition, differ-
ences between institutions and regions vary over time so
that results may not generalize beyond the original data
source.'*® With the advent of generative Al/ML, there are
opportunities to leverage these technologies to assist cli-
nicians and researchers using EHR. Generative Al/ML
develops new content by applying advanced algorithms to
existing data from sources such as the internet. Genera-
tive pretrained transformer language models have dem-
onstrated the ability to answer complex, context-specific
medical knowledge questions accurately, and to struc-

Circulation. 2024;149:e00—e00. DOI: 10.1161/CIR.0000000000001201

Use of Al'in Improving Outcomes in Heart Disease

ture and summarize clinical data, as well.'*® However, the
accuracy of such systems has not been widely tested, par-
ticularly for guiding health care decisions. It is thus impera-
tive that data scientists discuss design choices and study
assumptions with clinicians or other clinicians who are
knowledgeable of local clinical protocols, and researchers
adopt causal frameworks where possible to avoid intro-
ducing bias by indication. A causal diagram can be helpful
to infer the generalizability of models by making explicit
which relationships in the data are likely to differ between
institutions and across time.'® Last, model evaluation
should be tailored to the intended use of the system, for
example, screening versus triage recommendation.’®’

A FRAMEWORK FOR THE SUCCESSFUL
IMPLEMENTATION OF Al/ML IN
CARDIOVASCULAR MEDICINE

Implementation Science for Al/ML-Based
Precision Medicine

Implementation science is defined as the study and use
of methods aiming to promote the systematic uptake of
research findings and other evidence-based practices
into routine practice, thereby improving the quality and
effectiveness of health serviceégz’i;%{gg all people.?® Im-
plementation science for Al/ML is*&§sential to ensure
that personal and public data are integrated appropriate-
ly to address core unmet clinical needs to achieve preci-

sion cardiovascular medicine (Table 7).52

Clinical Utility and Integration in Patient Care

Robustly designed Al/ML systems.can identify infor-
mative and hidden patterns in complex clinical data to
personalize cardiovascular medicine from screening and
diagnosis, to find novel classification and phenotypes, to
predict adverse outcomes, to guide therapy, and to guide
trial design.®!

Al/ML should augment and support clinical decision-
making, rather than replace clinical judgment needed
for evidence-based practice.** However, to realize this
potential, Al/ML analytics must be presented to clinicians
through intuitive and interpretable human—computer
interfaces that enhance user trust and integrate with
existing clinical workflows.®® Interpretability in Al/ML,
however, is an imprecise and controversial science.
Moreover, it is not clear that complete understanding of
a complex algorithm is essential for its robust use, given
that algorithms in some instances have already outper-
formed the expert annotator. For instance, it is not nec-
essary to understand the complex mechanisms of action
of a drug to use it according to its labeling on the basis
of clinical evidence. As a result, the efficacy of Al/ML
algorithms should be FDA “labeled” with precise descrip-
tions of the subject population and intended clinical
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Table 6. Electronic Health Records

Use of Al'in Improving Outcomes in Heart Disease

Best practices

Description

Use of the largest and best curated electronic EHR to develop
Al/ML algorithms

EHR-based optimization of Al/ML algorithms for each application that takes into
consideration the number and types of elements to maximize their generalizability.

The data represent the whole population for each application

Consideration to differences between centers in the accuracy and frequency of data
collection, varying modalities, and clinical actions helps to avoid exacerbating disparities.

Development of predictive models and clinical decision support
systems using EHR

Clinical conditions should be clearly defined for best use of EHR data.

lterate future EHR structures on the basis of learning from
current experience

The structure of current EHR borrows heavily from historical paper records. Future EHR
may benefit from different data curation, structures, and analytic systems.

Gaps and challenges

Description

Ensure the accuracy and generalizability of predictive Al tools on
the basis of the EHR.

EHR-based Al/ML algorithms can predict cardiovascular disease better than the American
College of Cardiology/American Heart Association pooled cohort risk equation, yet more
salient analyses may improve their rigor and robustness.

EHR-based Al/ML algorithms may complement randomized
clinical trials

It is increasingly difficult and expensive to conduct randomized clinical trials. Robust
“real-world trial emulation” may fill the gap between such trials.

Integration of EHR data from diverse electronic systems

EHR systems differ around the world. Al/ML algorithms developed in large national
databases, or claims data, are expected to be applicable to diverse health care systems.

Integration of EHR data from different languages

Multilingual EHR may promote diversity, equity, and inclusion, enabling Al/ML algorithms
trained with data from underrepresented races and ethnicities to be applied to these
groups in the United States.

Ensure that EHR are available to all

Making EHR-based AlI/ML algorithms cost feasible, including in remote and
underresourced areas, helps avoid exacerbating inequities and perpetuating bias of
these algorithms.

Al indicates artificial intelligence; EHRs, electronic health records; and ML, machine learning.

scenarios for use.*® As new patient groups are studied,

American

ensure wide access and avoid'ghe fisk.of inadvertently

theirdetails should be added to labeling. Aunique hazard to
Al/ML-based systems is that algorithm performance may
degrade over time as a consequence of such changes in
patient demographics, clinical ‘context, or other factors,
and may have to be updated and reevaluated as part of
clinical practice evidence.'®® Reimbursement models for
Al/ML in cardiovascular disease -must -be developed to

widening health care disparities.

At present, there remains a paucity of evidence that
Al/ML can positively affect patient outcomes compared
with current standards of care.'®* The future adoption of
Al in cardiovascular medicine will ultimately require such
evidence that AI/ML applications measurably improve
patient outcomes.'®®

Table 7. A Framework for Successful Implementation of Al/ML in Cardiovascular Medicine

Best practices

Description

Al/ML algorithm triangulation in different data sets, by allowing
data sharing

Several best practices have been reported by the American Heart Association Precision
Medicine Platform to facilitate generalizability of results and data sharing.

Study benchmarking against current standards for gain and
cost-effectiveness analysis.

Validation of Al/ML-based precision medicine algorithms (eg, using cluster randomized
clinical trials to assess the utility of the developed decision support tools).

Involvement of a multidisciplinary team in Al/ML algorithm
development

Use of interdisciplinary teams of clinicians and researchers who leverage Al/ML and
informatics, may improve treatment for patients.

Explainability of Al/ML algorithms increases trust and adoption

Scepticism regarding the wide application of “big data” analysis and Al/ML algorithms can
be eased by explainable algorithms for interested stakeholders.

Gaps and challenges

Description

Algorithms need to be transferable

Translating precision medicine platforms from the original development cohort to other
external patient populations introduces uncertainty in clinical decisions.

Social determinants or measures of deprivation are not used for
prediction, classification, or optimization

Inclusion of social determinants or measures of social deprivation have been shown to
improve cardiovascular risk scores.

Regulations ensure that Al/ML algorithms are safe, effective,
efficient

The diversity of devices, AI/ML algorithms, and databases introduces several risks. The US
Food and Drug Administration provides guidance on data use and algorithm development.

Protection of at-risk communities from further discrimination by
Al/ML algorithms

It is critical to devise strategies to eradicate rather than exacerbate existing health
inequalities.

Alindicates artificial intelligence; and ML, machine learning.
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Clinician Education and Decision-Making

With the avalanche of reported Al/ML applications in
medical practice, there is pressure for clinicians to un-
derstand AlI/ML to at least the same level they apply
for any technology that influences decision-making.'®® A
useful model may be one where, first, clinicians must be
able to identify when a technology is appropriate for a
given clinical scenario, and what inputs are required; and,
second, clinicians should be able to interpret results in
the context of errors and biases that may limit applicabil-
ity for specific patient groups. In a model for the future,
clinicians’ progressively incremental data science train-
ing may take the form of progressively adding statistical
courses during training, or as continuing education for
current practitioners. It is critical that all stakeholders ap-
preciate the context-specific nature of Al/ML and that
performance of a given application may not always be
transferable.’®’

Data Handling

Issues pertaining to detailed descriptions of data han-
dling (preprocessing),’ such as which and how features
are extracted and excluded,'® and how final model pre-
dictions are validated, are required to ensure transpar-
ency and clinical acceptability of Al/ML-derived decision
support systems, and may be of a different level of in-
terest among stakeholders. Furthermore, details such as
recoding, newly derived-variables, data reduction tech-
niques or transformations may substantially affect the
interpretation and accuracy of models, yet may differ
from conventional statistical approaches and require ad-
vanced training. It is essential to assess the gain from us-
ing an Al/ML decision support system over conventional
methods. There are emerging reporting guidelines that
aim to enhance both the rigor and reproducibility in the
design of Al/ML-derived decision support systems.'®®

Ethics

Those who contribute their data to Al/ML databases
to improve the care of others should be treated with
thoughtfulness and respect. Individuals likely have dif-
fering views on how their data should be used in the
future. Many contributors are not comfortable with their
data being sold to third parties for commercial purpos-
es, without notice or consent.'®"%? Individuals generally
want to be informed about the commercial use of their
data regardless of whether it is identified or deidentified
(as is typical for AI/ML databases). Self-identified race
and ethnicity can also be associated with data sharing
preferences.'2164

Stakeholders must also assess which communities
are contributing to Al models and which are benefiting
from those advances to balance equity considerations.'®

Circulation. 2024;149:e00—e00. DOI: 10.1161/CIR.0000000000001201
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Equitable Distribution of Benefits and Burdens

Al/ML offers the means for implementing precision
medicine and personalized care, yet the increasing ex-
traction of personal data by public and private stakehold-
ers may negatively affect health and well-being through
many effects pertaining to environmental, social, political,
and commercial determinants of health.'6667

The World Health Organization defines equity as the
absence of avoidable, unfair, or remediable differences
among groups of people defined socially, economically,
demographically, or geographically.'®? For health equity to
be achieved, every citizen should have a reasonable oppor-
tunity to fully access all available health care. Therefore, to
reach the aspirational goal of health care equity, population-
representative datasets must be included in Al/ML algo-
rithm development. On the other hand, the scaling inherent
in AI/ML may further exacerbate existing inequities.'®®
Therefore, prioritizing in equity should be a noticeably articu-
lated goal in health care Al/ML algorithm development.*°

Bias

Al models can perform differently across subpopulations
which may reflect societal and statistical bias. Societal
bias is due to systemic forms ofﬁgiscrimination that drive
disproportionate cardiovascularghealth--eutcomes and dif-
ferential data quality across historicallyj"&fid contemporarily
oppressed and excluded populations.'®® These biases can
manifest at the structural level, the institutional level, or in-
terpersonally. Statistical bias comes from nonrepresentative
samples in the training data, for instance, undersampling
or excluding certain populations. Exclusion may be due to
certain subpopulations not being represented in the data
or have incomplete data due to inadequate health care ac-
cess, and other socioeconomic factors that prevent robust
integration into health care systems.' Model bias relates to
the specific mechanics of most Al/ML and statistical mod-
els whereby the tools work by minimizing overall prediction
error without attention to performance among underrepre-
sented racial and ethnic groups. As a consequence, Al mod-
els can exhibit overall strong performance (low error) while
still performing poorly for people of underrepresented races
and ethnicities who exhibit the worst health outcomes.'”

Attention to Those Historically Excluded by
Medical Advances

Digital technologies and Al/ML raise important issues
about the way we perceive and represent sexuality, race,
ethnicity, gender, class, geography, age, underlying health
condition, and ability. Therefore, in the context of Al/ML-
driven digital health, a new understanding of inclusion will
involve forms of context-aware technical development, and
innovative, local- and community-led approaches aiming the
redesign, deployment, and validation of digital technologies.
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Fairness

Al/ML models will not be completely fair until the various
forms of discrimination that drive health inequities, and
thus data bias, are removed. The current status quo is
such that populations most harmed by algorithmic bias
are not centered in the development of algorithms or the
processes to make them more just.'

Therefore, to mitigate societal bias at the institutional
level, individuals from people of underrepresented races
and ethnicities must be incorporated into the Al/ML
model building process with community-based partici-
patory frameworks on more diverse research teams to
make sure that the model-building process, from defin-
ing the question, to outcome selection, and feature engi-
neering, are applicable to all populations or designed
specifically for historically excluded ones. Such evalu-
ations will need to be tailored to the specific disease
context and model task and may include consideration
of which subgroups have the highest incidence of dis-
ease, greatest risk of adverse events, or least access to
treatment.31™

The intersection of social identities should consider,
when necessary, debiasing techniques to decrease vari-
ation in performance across subgroups.'”'" Although
debiasing provides an opportunity to incorporate social
determinants of health to better identify populations
for Al/ML models,'™ some clinicians have called for a
reevaluation of this practice. In some cases, race correc-
tion may exacerbate inequities in disease outcomes and
treatments among groups that already experience dis-
parities. The American Heart Association is committed to
assessing current algorithms with race correction.

Consideration to Community Input

For Al/ML technologies to earn the trust of the public,
a continuous effort will be required by all stakeholders.
Public engagement and dialogue are means that will
ensure that use of Al/ML technologies in health care
meets certain core societal expectations and values, and
builds and maintains broad trust and acceptance, as well.
Public dialogue will also ensure that societal views on
Al/ML-based tools are incorporated across the digital
health ecosystem.

Approaches that promote inclusivity include concepts
such as: (1) open-source software, which improves
transparency and participation in the design of an Al/ML
technology; (2) citizen science, which refers to the direct
involvement and contribution of nonprofessional scien-
tists to scientific research; (3) increased diversity, of the
data on which Al/ML algorithms are based, by promoting
greater involvement of people who are familiar with the
nature of potential bias, context, and regulations through-
out the process of the algorithm development, including
the labeling of the data, and the algorithm design, testing,
and deployment, as well."””
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Law

In general, the law can be applied to AI/ML in 2 ways:
(1) regulatory attempts to mitigate Al/ML harms before
they happen, and (2) through medical malpractice/case
law system to attempt to rectify harms already allegedly
caused by Al/ML. A new challenge that Al/ML presents
in case law is the lack of transparency in how Al/ML
mechanisms  formulate clinical recommendations.'®®
Al/ML generated by a “black box" can make it difficult to
establish both how the standard of care was defined and
whether that care “caused” the injury in question. Although
clinicians should use an Al/ML algorithm as labeled,*® it
remains to be seen whether clinicians will be held liable
for injuries associated with the use of Al/ML tools, and
whether such tools will shift the standard of care.'™

The FDA regulates Al/ML as a medical device, and
they recently reaffirmed their commitment to improve-
ment of Al/ML algorithms, mitigating against bias and
improving robustness.'®® Today, FDA's list of cardiovas-
cular medical devices incorporating Al/ML functional-
ity includes 50 technologies that have received 510(k)
clearance, and b that they were granted De Novo request.

Al/ML Governing Architectures

Because the health care sector;fisffvfdxggg;jgd to be the fast-
est growing data-producing industy2*#he-uptake of Al/ML
in health care will rely heavily on the trust of patients, doc-
tors, and other health professionals.'?' However, trust can be
eroded by several personal, technological, and institutional
factors, including fear of data exploitation, lack of digital skills,
paucity of accessibility, and poor reputation of clinicians.'®®
There is a need to build governing architectures that cre-
ate trustin Al/ML and digital health. Such-approaches may
accelerate innovation in task-focused directions, protecting
the collection and use of digital data to protect individual
rights, promoting the public benefit of using such data, and
building a culture of equity.'*> Governing architectures for
Al/ML digital health would have the goals of empowering
patients, people of underrepresented races and ethnicities,
and disenfranchised groups, as well, ensuring affordable
digital health, ensuring digital rights, and regulating busi-
ness in the digital-health ecosystem. Country or regional
policymakers could promote digital-health strategies that
prioritize such technologies through investment roadmaps.
Digital models of governance must be adapted in dif-
ferent societal contexts and account for implications on
an individual's health and well-being.'®* As such, digital-
health technologies that create value for the general pub-
lic will require mission-oriented innovation,'®® such that
these technologies are not developed or inadvertently
repurposed in ways that threaten human rights, or rein-
force discrimination.'™ At the institutional level, Al/ML
technologies that rely on data that are both accurate and
representative may help reduce inefficiency and errors
and ensure more appropriate allocation of resources.'”
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Development of algorithm “auditing” processes that
can recognize a group (or even an individual) for which
a decision may not be reliable, can reduce the implica-
tions of such a decision, for example, due to bias."” As
a result, health care—related Al/ML algorithms have the
capacity to influence confidence in a health care system,
particularly if these tools result for some groups in worse
outcomes or increased inequities.*®

Liability

Assessing the liability of AI/ML algorithms is crucial to
balance their risks and benefits. Thus, Al/ML governing
architectures need to engage all stakeholders (develop-
ers, clinicians, and researchers) to continuously evaluate
the safety and effectiveness of these algorithms. Com-
panies should file an application with the FDA to allow
marketing of an algorithm. After approval, there should
be postmarket safety monitoring similar to phase IV drug
development evaluation. In this ongoing phase, if the use
of the algorithm results in potential adverse events/sys-
tem failure, it would be the responsibility of the Al/ML
algorithm developers to report and investigate such out-
comes. Therefore, the critical issue of a physician's pro-
fessional liability in case of an incorrect decision and a
potentially harmful outcome,'®® as with any other medical
product, narrows down to a responsibility to use such al-
gorithm as “labeled,” which minimizes liability concerns.*®

Adverse Event Reporting

From a quality and safety perspective, institutional met-
rics designed to evaluate patient safety and subsequent-
ly mechanisms targeted to reduce adverse events may
have to be modified for Al/ML-based applications.

The digitization of EHR facilitates the automation of
many aspects of patient safety, but efficacy is contingent
on reliable data. Even if we can ensure that future algo-
rithms are trained on more representative patient popula-
tions, there remain certain components of data collection
that invariably involve a human element (eg, bias of the
reporter).’®® Patient safety is of paramount importance
and the use of decision support systems in clinical set-
tings must be monitored long term to avoid hidden strati-
fication'®' or other unintended consequences.'®

System Upgrading

Because data quality, population characteristics, and clin-
ical practice will all change over time, decision support
systems need to be regularly updated*® to mitigate the
effect of these changes on their reliability, validity and
clinical utility.’® It may also be necessary to update out-
come definitions to retrain models as scientific under-
standing of disease progresses (eg, better phenotyping
of subtypes), or the demographics of the areas in which
the Al/ML algorithms are used change.
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The system-upgrading process ideally should be
streamlined in some way to allow the decision support
system to be upgraded in a timely manner, but this can
be costly and can lead to unintended consequences if
prespecified processes are not in place.*

Some Al/ML algorithms may be designed to continue
to learn (train) continuously, refine their internal model,
and improve performance (refinement/adaptation).#%'%6
In particular, the algorithm learns how to update from the
addition of new cases (inputs) resulting in different out-
puts with the same inputs (compared with the outputs
before the update). Such algorithms require frequent
real-world performance monitoring, although the ongo-
ing development of these systems increases the diffi-
culty of applying a regulatory framework.'®®

Cybersecurity

Although questions remain with respect to privacy and
patient control over their data,'®* subtle approaches to
reidentification of (potentially improperly) anonymized
health data stand in stark contrast to the illegal, forc-
ible acquisition of personal health data by means of a
data breach (eg, illegal disclosure, attainment, or use
of information without authorization). Theft of medical
records allows access to financial services and health
care for criminals.®® Althoughitheiisks to patient pri-
vacy should be minimized, an acceptable risk threshold
needs to be decided by all stakeholders, below which
data sharing can occur, for the benefit of a global medi-
cal knowledge system, by placing appropriate firewalls
and other key cybersecurity measures that are regularly
updated.'®

CONCLUSIONS

The American Heart Association aims to advance cardio-
vascular health for all, including identifying and removing
barriers to health access and quality.

At this dawn in the era of precision medicine, scientists
and clinicians, computer and data scientists, patient advo-
cacy groups, health care organizations, and policymakers
must develop principles and guidance for the development
and application of Al/ML-based digital health. Numer-
ous applications already exist where Al/ML-based digital
tools can improve disease screening, extract insights into
what makes individual patients healthy, and develop pre-
cision treatments for complex diseases.

There is an urgent need to develop implementa-
tion science for Al/ML tools to create tractable cost-
effective workflows for Al/ML-based precision medicine
that address core unmet clinical (or translational) needs,
the evidence of which can be robustly tested in trials.
This process must organically incorporate the need to
avoid bias and maximize generalizability of findings to
avoid perpetuating existing health care inequalities.
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