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Abstract—Large language models (LLMs) have shown re-
markable capabilities in various natural language tasks and
are increasingly being applied in healthcare domains. This
work demonstrates a new LLM-powered disease risk assessment
approach via streaming human-AlI conversation, eliminating the
need for programming required by traditional machine learning
approaches. In a COVID-19 severity risk assessment case study,
we fine-tune pre-trained generative LLMs (e.g., Llama2-7b and
Flan-t5-xl) using a few shots of natural language examples,
comparing their performance with traditional classifiers (i.e.,
Logistic Regression, XGBoost, Random Forest) that are trained
de novo using tabular data across various experimental settings.
We develop a mobile application that uses these fine-tuned LLMs
as its generative Al (GenAl) core to facilitate real-time inter-
action between clinicians and patients, providing no-code risk
assessment through conversational interfaces. This integration
not only allows for the use of streaming Questions and Answers
(QA) as inputs but also offers personalized feature importance
analysis derived from the LLM’s attention layers, enhancing
the interpretability of risk assessments. By achieving high Area
Under the Curve (AUC) scores with a limited number of fine-
tuning samples, our results demonstrate the potential of genera-
tive LLMs to outperform discriminative classification methods in
low-data regimes, highlighting their real-world adaptability and
effectiveness. This work aims to fill the existing gap in leveraging
generative LLMs for interactive no-code risk assessment and to
encourage further research in this emerging field.

Index Terms—Personalized Risk Assessment, Large Language
Model, Conversational AI, COVID-19

I. INTRODUCTION

Disease risk assessment is a critical tool in public health
surveillance, where demographic variables and social deter-
minants are often utilized to assess a patient’s susceptibility
to disease, predict treatment response, and forecast severity
outcomes. These predictions have been carried out using
traditional classification models that are trained de novo for
each disease or condition using curated tabular data [[1]-[3].
For example, Wang et al. [2]] developed a linear model-based
multi-task learning approach to predict the risk of childhood
obesity according to their geolocations. Li et al. [3]] developed

a mixture neural network approach to stratify patients and
predict heart failure risk within each group.

The advent of transformers has marked a significant shift,
allowing researchers to deploy these advanced models for
various tasks, thereby improving prediction accuracy and
handling complex data structures more effectively. Researchers
have extensively used BERT-style models [4] in various
healthcare tasks. Notable examples include ClinicalBERT [5]]
and BioClinicalBERT [|6], both trained on clinical notes in
the MIMIC-III database. Additionally, MedBERT [7] was
further trained on electronic health records (EHRs), resulting
in high Area Under the Curve (AUC) scores for disease risk
prediction. However, BERT-based models, primarily used for
discriminative tasks, are limited in their ability to process
streaming question and answer (QA) pairs, such as in con-
versational data science tasks, due to their architecture.

Generative LLMs, such as OpenAI’s GPT-3 [§]], have intro-
duced significant advancements in Natural Language Process-
ing (NLP) for healthcare by transcending the limitations of
discriminative models like BERT. Unlike BERT-style models,
which often require extensive preprocessing and are primarily
tailored for specific tasks with structured inputs, generative
LLMs excel at handling diverse data formats, including both
structured clinical data and unstructured text such as patient
narratives and medical histories. This versatility allows them
to integrate and synthesize information from multiple sources,
making them highly effective for complex tasks such as
predicting disease severity.

With increasingly longer context windows, up to 8,192
tokens in OpenAl’s GPT-4 [9]], generative LLMs can efficiently
manage extensive patient records and interaction histories.
This capability to process long, streaming, and varied in-
puts, coupled with their extensive pre-training on diverse
datasets, allows generative LLMs to generalize effectively
even with limited labeled domain-specific data. Furthermore,
their ability to handle multi-hop questions and answers po-
sitions them uniquely for real-time conversational applica-
tions, facilitating no-code disease assessment via interactive
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Figure 1. A comparison between LLM-based conversational Al (Conv-Al) and traditional machine learning methods for disease risk assessment. The Conv-Al
leverages pretrained models that require only very few-shot fine-tuning, can handle unstructured textual data, provide real-time feature importance for each risk
assessment it provides, and offer transferability with zero to very few-shots for new risk assessment tasks. In contrast, traditional machine learning methods
require large datasets for de novo training, process structured data, rely on extra computational steps for instance-specific post-hoc feature importance (e.g.,

SHAP), and need retraining for each new task.

patient engagements. These strengths make generative LLMs
particularly suitable for tasks such as disease severity risk
assessment, where leveraging pre-trained world knowledge
and user-provided natural language inputs allows for accurate
predictions without the need for coding.

Despite the remarkable performance of proprietary black-
box LLMs, such as GPT-4 [10] and MedPalLM-2 [11], re-
searchers are increasingly interested in deploying white-box
models in healthcare and other high-stakes domains since these
models can mitigate risks related to data privacy breaches
and hallucination. Their transparency allows for task-specific
and domain-specific fine-tuning at a reduced cost, providing
researchers with complete control over the process. This shift
towards encoder-decoder and decoder-only models is exempli-
fied by PMC-LLaMA [12], a general-purpose LLM adapted
from LLaMA and fine-tuned using instruction tuning on health
and medical corpora, which has outperformed LLaMA-2-70B
and ChatGPT-175B in several health/medical Question-and-
Answer (QA) benchmarks.

Despite these advancements, there remains a notable gap
in research regarding the use of generative LLMs for disease
diagnosis and risk assessment tasks. Addressing this gap is
crucial for fully leveraging the potential of LLMs in healthcare
applications, as they offer advanced capabilities in handling
complex medical data and providing accurate predictions. One
of the few studies in this area is CPLLM [13], which fine-
tunes Llama2 [14] as a general LLM and BioMedLM [15],
trained on biological and clinical text, for different prediction
tasks. Our work, however, opens a new avenue of research
in conversational data science to enable no-code personalized
risk assessment via a conversational interface anytime and
anywhere. We experiment with a broader range of white-
box LLMs, including LLaMA2, Flan-T5, and TO models,
integrating them into a conversational agent mobile application
with a natural language interface for no-code personalized risk
assessment and patient-clinician communication. A compari-

son of our work to traditional methods is shown in FigurdI]

Our contributions to the field of LLM-based disease risk
assessment are multifaceted. First and foremost, we propose a
paradigm shift from traditional machine learning-based health
outcome prediction, which typically relies on structured tab-
ular data, to conversational agent-based no-code prediction
using streaming QAs. This is realized through the development
of a GenAl-powered mobile application that integrates fine-
tuned LLMs as the core for personalized risk assessment
and patient-clinician communication. The application not only
assesses disease risk for patients but also provides contextual
insights related to risk surveillance and mitigation through
natural language conversation.

Secondly, we demonstrate that generative LLMs can outper-
form traditional machine learning methods (Table E]) such as
Logistic Regression [[16], Random Forest [[17], and XGBoost
[18], in low-data regimes, which is critical for medical
applications where labeled data is scarce. For instance, our
results show that LLMs like the TO0-3b model achieve an
AUC of 0.75 in zero-shot settings, underscoring the ability
of pre-trained LLMs to achieve high accuracy without task-
specific training. Additionally, we provide a comprehensive
comparison of both decoder-only and encoder-decoder models,
fine-tuned using the widely adopted parameter-efficient LoORA
(Low-Rank Adaptation) method [19].

Thirdly, we introduce a feature importance analysis derived
from the LLM’s attention layers (Section [[I-G), providing
personalized insights into the most influential factors driving
the model’s predictions. This enhances the interpretability and
utility of the risk assessment for both patients and clinicians,
offering real-time, instance-specific explanations during infer-
ence.

II. METHODS
A. Our Research Objective

The primary objective of this research is to explore the
effectiveness of pre-trained generative LLMs in no-code risk



Backend - System Developer

o) Text Serialization i Prompts
'E A Patlent male B yEs, hlSPE}H_IC 1s 1o, age 5- (" A patient male is yes, hispanic is no, age 5-11 Fine-Tuning
5SS 11 is yes, cough is yes, vomiting is yes, ... is yes, cough is yes, vomiting is yes, .. =
[ Result: yes @
1 List Serialization Does the descriptions of this patient shows IEI
g : - - \| severe symptoms of COVID-19? yes or no? w
= A patient male = yes, hispanic = yes, age 5- \_Result: )

(18 11 = yes, cough = yes, vomiting = yes, ... . i

Result: no l
Labels Yes
Does your child feel @El

() shortness of breath? '@' Yes
a LLM
-‘% 8 Sometimes while playing N 2,5

- or walking distance. I@I

E ()] Does your child have

a a—) nausea or vomiting? LLM Top Attributing Features
a') ‘E Usually after having a N COVID-19 antibody test: 10%
‘) 5 meal in the morning. Lungs check: 8%

E gatent Nausea or vomiting: 7%

Frontend - User

Figure 2. Workflow for few-shot COVID-19 severity risk assessment using generative LLMs with different serialization techniques. The top section, labeled
Backend - System Developer, shows the fine-tuning phase where a few-shot sample of patient data, serialized via List and Text Templates, is used to fine-tune
the LLMs. This backend process includes the creation of prompts and corresponding labels for model fine-tuning. The bottom section, labeled Frontend -
User, illustrates how a conversational chatbot interacts with users through our application to gather responses via streaming QAs. These responses are analyzed
by the fine-tuned LLM in real-time, providing risk assessments and highlighting the top attributing features that explain the model’s risk assessment.

assessment of disease severity using few-shot multi-hop QAs.
We aim to evaluate how these generative LLM-powered con-
versational agents can utilize streaming QAs to accurately
classify patient outcomes as severe or non-severe, which is
crucial for early risk assessment and optimizing healthcare re-
source allocation. Through a case study of COVID-19 severity
risk assessment, we develop an application that employs open-
source generative LLMs to determine the severity of COVID-
19 outcomes. This involves leveraging the models’ capabilities
in zero-shot and few-shot settings, with a focus on the use
of serialization techniques to enhance their effectiveness and
generalizability. We also integrate real-time feature importance
to provide interpretable risk assessments. The workflow of our
approach, from fine-tuning generative LLMs using serialized
QA pairs to real-time risk assessment via a conversational
interface, is illustrated in Figure E}

B. Data Collection

A dataset was collected from the emergency departments
(EDs) of Children’s Hospital of Michigan and UPMC Chil-
dren’s Hospital of Pittsburgh between March 2021 and Febru-
ary 2022. The dataset includes n = 393 participant records,
each characterized by responses to a series of carefully de-
signed questions. See Figure [] for sample QAs. The severity
of outcomes was defined as the need for supplemental oxygen
(> 50% FiO2), non-invasive positive pressure or mechanical

ventilation, extracorporeal membrane oxygenation, vasopres-
sors or inotropes, cardiopulmonary resuscitation, or death from
a related cause during hospitalization or within one month
after discharge. These outcomes, categorized as severe or non-
severe, were determined through chart reviews and parent
surveys conducted thirty days post-discharge [20].

C. Tabular Data for Traditional Models

As traditional machine learning methods require tabular
data as input, we formalize the questionnaire QA pairs as
D = {(xi,9:)}",, where n = 393. x; € {0,1}¢ represents
the binary feature vector of the i-th instance where d = 15, and
y; € {0, 1} denotes the binary class label indicating the pres-
ence or absence of severe COVID-19 symptoms determined
by clinicians.

Each feature vector x; consists of binary indicators repre-
senting social determinants, clinical, and demographic factors
that may influence the severity of COVID-19, such as age,
pre-existing conditions, vital signs, and laboratory test results.
The feature names are denoted as F = {fi, fo,..., fa}
where each f; is a natural-language string describing the
corresponding attribute.

The task is to predict the binary outcome y; based on
the information provided in x;. This constitutes a supervised
learning problem where the objective is to train a model to
minimize prediction error on unseen data.



D. Serialization for New Conversational Al

At the time of data collection during 2021-2022, we did
not yet have a conversational agent (chatbot) for automated
data donation from users, so we used a questionnaire to collect
answers from each patient based on a set of questions designed
for this study. As a result, the native format of the dataset
consists of QA pairs, which were subsequently serialized to
fine-tune the generative LLMs for the risk assessment task.
It is important to note that the fine-tuned model is capable of
assessing risk using streaming QAs in real time (Figures 2| and
[@.

To achieve serialization, the features in our dataset are
denoted as fi, fo,..., f4, and their associated values as
v1,Va,...,vq. This notation provides a structure that is trans-
formed into natural language prompts for the LLM.

We used two main serialization methods, the List Template
and the Text Template, to create natural language representa-
tions of the data. As shown in Figure 2] the List Template links
each feature with its value using an equal sign (‘="), while the
Text Template uses a narrative structure with the word “is” to
connect each feature with its value. These templates enable us
to evaluate which serialization approach better translates the
data into actionable insights by the LLM.

E. Generative LLMs

We explore the capabilities of three white-box LLMs—
LLaMAZ2 [14], TO [21], and Flan-T5 [22]—focusing on their
application in risk prediction for COVID-19 using both the
native QA pairs and the formatted tabular dataset. To our
knowledge, this is one of the the first attempts leveraging
generative LLMs and conversational data science for disease
risk assessment across various LLMs and few-shot settings.
Our selection includes both decoder-only (LLaMA2) and
encoder-decoder architectures (TO and Flan-T5), allowing for
a comprehensive assessment and comparison of their perfor-
mance. The white-box nature of these models is particularly
advantageous as it enables setup on local hosts with private
datasets, ensuring precise risk assessment by allowing direct
access to model weights and logits.

The input to the LLMs is a serialized string generated from
the tabular data using the previously explained serialization
strategies. Given a feature vector x; = [fi, f2,..., fq] and
their associated values [vy,vs,...,v4], the serialized input
string S; can be represented using either the List Template
or Text Template serialization methods (Figure [2).

The LLM processes the serialized input string S; and
outputs logits for the next token in the sequence. We focus
on the logits corresponding to the tokens ‘yes’ and ‘no’,
which indicate severe or non-severe symptoms respectively.
The probabilities for these tokens are obtained by applying
the softmax function to the logits:

elogns

POeSISi) = g goan

yes

The probability p(yes|.S;) indicates the likelihood of severe
symptoms based on the input data S;. This probability is
directly used as the severity risk score for evaluation purposes.

To determine the binary predicted label ¢; from this prob-
ability:

~J 1 if p(yes|S;) > 0.5
vi 0 otherwise

The probability score p(yes|S;), reflecting the severity risk,
is used to compute the AUC for evaluation (Figure [2).

F. Evaluation Setting

a) Zero-Shot Setting: In the zero-shot setting, our ap-
proach leverages the intrinsic capabilities of LLMs. These
models, unlike traditional classifiers such as Logistic Re-
gression and XGBoost, have been extensively pre-trained on
diverse datasets. This extensive pre-training enables them to
apply their accumulated world knowledge directly to specific
classification tasks without additional training, demonstrating
exceptional generalizability.

We assess the zero-shot prediction effectiveness of these
LLMs by presenting them with tasks aligned with our study’s
objectives that they have not been specifically trained on.
The models interpret and classify new, unseen data solely
based on their pre-trained knowledge. This approach not only
highlights the potential of LLMs in real-world applications but
also evaluates their ability to generalize from their training to
novel scenarios in healthcare.

This zero-shot methodology allows us to evaluate how well
these LLMs can recognize and classify complex, previously
unseen patterns in healthcare data, providing valuable insights
into their practical applicability and limitations in clinical
settings.

b) Few-Shot Fine-Tuning: In the few-shot setting, we
utilize sample sizes of 2, 4, 8, 16, and 32 to fine-tune the
LLMs, aiming to examine the effect of training sample size
on model performance compared to traditional classifiers. To
ensure fairness and reduce bias in the fine-tuning process, we
maintain a balanced ratio of positive (y; = 1) and negative
(y; = 0) samples, with an equal number of examples from
each class in each sample size.

To enhance computational efficiency in adapting the LLMs
to our specific tasks, we employ a parameter-efficient fine-
tuning approach using LoRA (Low-Rank Adaptation) [[19].
Instead of adjusting all parameters within the model, LoRA
involves training a small proportion of parameters by inte-
grating trainable low-rank matrices into each layer of the
pre-trained model. This method allows the model to quickly
adapt to new tasks by optimizing only a subset of parameters,
thereby preserving the general capabilities of the LLM while
enhancing its performance on task-specific features.

G. Feature Importance Analysis

In disease risk assessment, interpretability is as critical as
accuracy, particularly when both are provided to the user in
real-time. Here, we introduce a novel approach for analyzing
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Figure 3. Normalized attention scores from LLaMA2-7b in the 32-shot setting, showing feature importance for two test cases, one positive (yes) and one

negative (no), simultaneously with the risk assessment.

feature importance by leveraging the attention mechanisms
inherent in the output layers of generative LLMs. This method
provides additional insights into the risk assessment process of
the model, which is valuable for both clinicians and patients
in understanding the factors contributing to the model’s ouput.
Our approach involves extracting attention scores from the
model’s output layer, where the attention assigned to each
input token is interpreted as an indicator of feature importance.
We compute the attention for each feature-value pair and
associate the average attention score with the corresponding
feature. This provides a holistic view of which features, along
with their associated values, influence the model’s output.
For an input sequence such as:

A patient with f1 = V1, f2 = V2, ..., f15 = V15.
Does this patient have COVID-19, yes or no?

We calculate attention scores for each feature-value pair in
the original sequence. The average attention score for each
feature-value pair is then computed, and the score is associated
with the feature itself, offering a representation of feature
importance in the context of disease severity risk.

This normalized attention score serves as a proxy for feature
importance, offering clinicians and patients a clearer under-
standing of which features (e.g., age, pre-existing conditions,
vital signs, etc.) are most influential in the model’s assessment
of COVID-19 severity risk. As illustrated in Figure [3] the plot
shows the normalized attention scores from the LLaMA2-7b
model in the 32-shot setting for two test cases: one positive
(yes) and one negative (no).

For the positive case, the top five features with the highest
attention scores, as shown in this figure, are:

1) f15: COVID-19 antibody test
2) f13: Lungs check

3) f12: Nausea or vomiting

4) 19: Cough

5) f14: Eye redness

By integrating this analysis into our mobile application, we
enhance the interpretability of LLM-based risk assessments,
empowering users with deeper insights into the model’s rea-
soning process.

III. MOBILE APPLICATION

To provide users with code-free disease severity risk assess-
ment and enhance user experience, we developed a mobile
conversational agent powered by the aforementioned gener-
ative LLMs. This application is designed to facilitate the
assessment and management of COVID-19 in children, with
potential applicability to other diseases and conditions. It
offers two versions: one for patients to donate their health
information via answering the questions and receive real-time
severity risk assessments, and another for clinicians to manage,
review, and interpret the sessions donated by patients. The pri-
mary goals are to enhance early detection of severe outcomes,
improve patient-clinician communication, and streamline the
overall risk assessment process.

The application targets patients, clinicians, and other health-
care providers involved in managing pre-clinical cases. It
leverages the capabilities of generative LLMs to analyze
patient responses and provide immediate feedback on the
risk of severe symptoms. Developed using React Native and
JavaScript for the front end, Firebase for database man-
agement, and various frontend technologies, the application
provides a user-friendly, efficient, and effective solution for
managing disease risks. It aims to improve patient outcomes
by facilitating timely and informed decision-making.

A. Database Structure

Our mobile application utilizes Firebase for database man-
agement, structured into three primary collections: Users,
Questions, and Answers.

o Users: This collection includes essential user information
such as ID, Email, and isAdmin. The ID uniquely
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identifies each user, the Email serves as contact in-
formation, and the isAdmin field (a boolean) indicates
whether the user has administrative privileges (clinicians)
or not (patients).

o Questions: Each document in this collection has a unique
ID and a Description field. The ID is used to
reference questions in the Answers collection, and the
Description contains the text of the question posed to
the user, ensuring clarity and specificity in data mapping.

o Answers: This collection records user responses during
their sessions. Each document includes a session ID,
an array of Answers where each entry links to the
relevant QuestionID from the Questions collection.
Additionally, it contains a Text field for the user’s de-
tailed response, an Answer field for the LLM-generated
response (e.g., Yes or No), a Date field marking the
session’s completion time, a Risk Score field, which
is derived from the user’s responses and utilized for sub-
sequent risk prediction by the LLM, and an Important
Features field, which stores the key features identified
by the LLM’s attention scores that contributed to the risk
assessment.

B. User Interface - Assessment

As shown in Figure[d] on the Assessment page, we leverage
the power of LLMs to engage in a conversation with the

patient. This interaction allows us to ask questions and gather
contextual information for each response. By doing so, we
retrieve a binary answer (Yes/No) using the LLM, which is
then provided to the primary care physician along with the
patient’s context to aid in decision-making.

After the user responds to each question, we use our LLM
to generate a binary answer. This involves providing the
LLM with an instruction that includes the question and the
user’s response, asking the LLM to interpret the response
into a binary answer (Yes or No). This sequential process
is performed for all questions. Currently, the input for the
final LLM-based risk assessment, which predicts the COVID-
19 severity risk, is based solely on the set of binary answers
generated by the LLM. Future enhancements could incorporate
the original user responses to improve context understanding.

We currently utilize the Llama2-7b API for answer retrieval.
Our long-term goal is to integrate a fine-tuned LLM hosted on
our servers to ensure better optimization and accuracy specific
to our dataset, as evidenced by the improved performance
results discussed in this paper.

C. User Interface - Patient and Clinician Results

Patients can submit a session at any time, receiving an
immediate risk assessment in the Patient Results section (see
Figure [). This section displays all sessions submitted by the
current user, along with their respective risk assessments.



Table I. Performance of models across different shot settings. All values represent the AUC rounded to two decimal places. Standard deviations given across
five random seeds are shown as subscripts. The suffixes -L and -T represent List Serialization and Text Serialization, respectively.

Model Number of Shots
0 2 4 8 16 32

Llama2-7b-L 0.54,05 0.69,07 0.69,06 0.68,04 0.63,04 0.66,07
Flan-t5-xI-L 0.62_03 0.64_04 0.63,02 0.68,06 0.66,05 0.69‘06
Flan-t5-xx1-L 0.60,03 0.61,03 0.61_05 0.62_06 0.5910 0.6511
TOpp(8b1t)—L 0.69.04 0.70_07 0.70_05 0.70.05 0.68.06 0.70_10
TO-3b-L 0.68 04 0.67 04 0.68 o5 0.70 .04 0.67 04 0.67 o7
Llama2-7b-T 0.59,05 0.69,03 0.69.01 0.64.07 0.6305 0.6706
Flan-t5-xI-T 0.69.03 0.69.02 0.69.03 0.71_05 0.69_04 0.70_05
Flan-t5-xx1-T 0.61,04 0.58.03 0.63.08 0.59.10 0.62.09 0.63,10
TOpp(8bit)-T 0.67 o2 0.65 o5 0.66 o5 0.68 04 0.65 os 0.67 os
TO-3b-T 0.75 04 0.65 06 0.65 05 0.68 03 0.67 .04 0.65 08
Logistic Regression — 0.57 o7 0.55 10 0.64 o6 0.61 11 0.69 0s
Random Forest — 0.57_07 0-57.06 0.62_08 0.66_07 0.68,07
XGBoost — 0.50,00 0.50,00 0.50,00 0-54.06 0.65,03

In the Clinician Results section, clinicians can access
all sessions from their patients, organized by patient ID for
efficient review. Each session includes a comprehensive report
featuring the predicted risk score, ensuring transparency and
aiding in clinical decision-making.

Upon submission, a patient’s session is instantly available
in both the patient’s and clinician’s panels. While patients can
only view their own sessions, clinicians can review all sessions
from their assigned patients. This setup supports real-time
updates through Firebase, facilitating seamless communication
and follow-up between patients and their healthcare providers.
Moreover, the application provides personalized feature im-
portance analysis based on the LLM’s attention layers, giving
both patients and clinicians additional insights into the most
critical factors influencing the risk assessment.

IV. EXPERIMENTAL RESULTS
A. Training and Fine-Tuning Settings

In our experiments, we employed a rigorous setup using
five specific random seeds—O0, 1, 32, 42, and 1024—to ensure
diverse dataset initialization and mitigate potential biases in
data allocation.

For traditional machine learning methods, the dataset of
393 samples was divided into 65% training, 15% validation,
and 20% testing segments. Although the full training set is
available, we focus specifically on training the models with up
to 32 shots to examine performance in the few-shot regime.
For LLMs, we similarly fine-tune the models using up to 32
shots, highlighting their capability to generalize in low-data
settings with minimal task-specific examples.

When fine-tuning LLMs using LoRA, we monitored the
validation loss to select the best model checkpoint, aiming
to minimize overfitting and enhance generalization to the test
set.

B. Effects of Serialization

Table [I] shows the performance of different serialization
methods for the LLMs across various few-shot settings. We
evaluated two primary serialization methods: List Template
and Text Template, across models tested with 0, 2, 4, 8, 16
and 32 training shots to observe performance variations with
the number of training examples.

The List Template often exhibited better performance at
lower shot counts, while the Text Template typically outper-
formed the List Template as the number of training examples
increased. The following summarizes the performance trends
for each model:

o Llama2-7b: In the zero-shot setting, the Text Template
achieved an AUC of 0.59 compared to 0.54 for the List
Template. At 2 training shots, both templates achieved an
AUC of 0.69, but the Text Template began to outperform,
reaching an AUC of 0.67 at 32 training shots compared
to 0.66 for the List Template.

o Flan-t5-xl: The Text Template consistently outperformed
the List Template across most shot settings. At 2 training
shots, the Text Template achieved an AUC of 0.69
compared to 0.64 for the List Template, and this lead
continued up to 32 shots, where the Text Template
achieved an AUC of 0.70 compared to 0.69 for the List
Template.

o Flan-t5-xxl: Both templates showed similar performance
in the early few-shot settings. At 2 training shots, the List
Template achieved an AUC of 0.61, slightly outperform-
ing the Text Template, which achieved an AUC of 0.58.
By 32 training shots, the List Template achieved an AUC
of 0.65, slightly outperforming the Text Template, which
achieved an AUC of 0.63.

o TOpp (8bit): In the zero-shot setting, the List Template
led with an AUC of 0.69 compared to 0.67 for the Text
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Figure 5. Average AUC in 2-shot setting over five different seeds. The left panel shows results using the List Serialization (-L) approach, while the right

panel shows results using the Text Serialization (-T) approach.

Template. This lead was maintained through most shot
settings, with both templates achieving around 0.70 AUC
by 32 shots.

e TO0-3b: The Text Template outperformed the List Tem-
plate in the zero-shot setting, achieving an AUC of 0.75
compared to 0.68 for the List Template. In the 2-shot
setting, the List Template performed slightly better with
an AUC of 0.67 compared to 0.65 for the Text Template.
At 32 shots, the Text Template closed the gap with an
AUC of 0.65 compared to 0.67 for the List Template.

Overall, while the List Template often provides an initial
advantage in early few-shot settings, the Text Template shows
competitive performance as the number of training exam-
ples increases. This suggests that serialization choice can be
important in low-data regimes. The Text Template’s strong
performance in the zero-shot setting, particularly for the TO-
3b model, highlights its potential when no training data is
available.

C. LLMs vs Traditional Machine Learning Methods

Our study highlights the versatility of LLMs for various
healthcare applications, particularly in scenarios with limited
data. To benchmark their performance against traditional ma-
chine learning methods, we compared LLMs with Logistic
Regression, Random Forest, and XGBoost.

LLMs benefit from extensive pre-training, allowing them to
generalize well to “unseen” data, unlike traditional methods
that require substantial amounts of training data. As shown
in Table [, LLMs like TO-3b-T achieved an AUC of 0.75
in the zero-shot setting, outperforming traditional methods
even without task-specific fine-tuning. This demonstrates the
effectiveness of LLM-powered risk assessment without the
need for additional labeled data.

In the 2-shot setting, LLMs continue to show strong per-
formance relative to traditional methods. For instance, Figure
[5] compares the average AUC across five different seeds in
this scenario. The left panel shows results using the List

Serialization (-L) approach, while the right panel shows results
using the Text Serialization (-T) approach. In this 2-shot
scenario, LLMs such as TOpp(8bit)-L and Flan-t5-xI-T achieve
AUCs of 0.70 and 0.69, respectively, clearly outperforming
traditional methods, including Logistic Regression, Random
Forest, and XGBoost, which achieved AUCs of 0.57, 0.57,
and 0.50, respectively.

LLMs’ ability to perform well with minimal data highlights
their advantage in low-data regimes. This makes them partic-
ularly suitable for real-time, no-code healthcare applications
where rapid decision-making is required, even in scenarios
where labeled data is scarce.

Furthermore, LLMs’ capacity to handle streaming data
formats, such as multi-hop question-answering (QA), enhances
their integration into conversational interfaces, supporting real-
time patient-clinician interactions. This flexibility offers sig-
nificant utility in clinical settings where personalized and
immediate risk assessments are needed (Figure [I).

Overall, while traditional methods may improve with larger
datasets, LLMs demonstrate a clear advantage in dynamic,
low-data healthcare environments. Their ability to handle in-
complete data and streaming input formats makes them robust
for real-world applications requiring adaptability and speed.

V. DISCUSSION

Our research demonstrates that generative LLMs provide
a robust and no-code approach for predicting COVID-19
severity, particularly effective in low-data regimes. These
models excel in zero-shot and few-shot settings, showcasing
their ability to perform well without extensive domain-specific
training. This is crucial for real-time applications requiring im-
mediate and reliable predictions, highlighting their exceptional
generalizability compared to traditional classifiers like Logistic
Regression, Random Forest, and XGBoost, which typically
require more labeled data to achieve comparable performance.

Generative LLMs effectively handle diverse input formats,
integrating both structured clinical data and unstructured nat-



ural language inputs from patient interactions. This flexibility
enables them to synthesize information from various sources,
such as patient medical histories and symptom descriptions,
enhancing their utility in dynamic healthcare settings. In our
study, we incorporated these models into a conversational
interface, which facilitates real-time patient-clinician interac-
tions and immediate risk assessments. This setup supports
continuous data collection and leverages the conversational
capabilities of LLMs to optimize clinical decision-making and
resource allocation.

Future work should focus on integrating continuous
clinician-patient conversational data for fine-tuning or in-
context learning (ICL), extending the application of LLMs
beyond static disease prediction models. Techniques like Chain
of Thought (CoT) and Chain of Interaction (Col), which align
with the interactive nature of medical consultations, show
promise for enhancing model performance in interpreting and
responding to patient data in real-time settings [23]], [24].

While our study utilized models like TOpp with parameter-
efficient fine-tuning using LoRA, future research could ex-
plore newer and more advanced small language models such
as LLaMA3-8b and Mistral-7b-Instruct, which have demon-
strated exceptional performance in low-data regimes. These
models could offer greater efficiency and accuracy as com-
putational resources and methodologies advance, supporting
more sophisticated and scalable applications in healthcare.

However, as these models continue to evolve, addressing
their vulnerabilities remains critical. Studies have demon-
strated that adversarial attacks can hijack LLMs during in-
context learning, undermining their performance in sensitive
tasks such as disease risk assessment [25[]. In adversarial in-
context learning (ICL) scenarios, an attacker can manipulate
inputs, influencing the model to produce inaccurate or harmful
predictions. This poses significant risks in high-stakes settings
like healthcare, where incorrect assessments could lead to
adverse patient outcomes. As LLMs gain wider adoption in
healthcare, enhancing their resilience against such adversarial
techniques is essential to ensure safe and reliable patient
outcomes.

In conclusion, generative LLMs offer a valuable tool for
no-code risk assessment in low-data regimes. Their ability to
perform zero-shot or few-shot transferability to new diseases
or conditions and handle complex, varied inputs positions
them as key assets for enhancing healthcare interventions
and resource management. Furthermore, the incorporation of
feature importance analysis derived from the LLM’s attention
layers provides an additional layer of interpretability, offering
personalized insights into the decision-making process for both
patients and clinicians.

REFERENCES

[11 X. Li, D. Zhu, and P. Levy, “Leveraging auxiliary measures: a deep
multi-task neural network for predictive modeling in clinical research,”
BMC medical informatics and decision making, vol. 18, pp. 45-53, 2018.

[2] L. Wang, M. Dong, E. Towner, and D. Zhu, “Prioritization of multi-
level risk factors for obesity,” in 2019 IEEE International Conference
on Bioinformatics and Biomedicine (BIBM). 1EEE, 2019, pp. 1065-
1072.

[3]

[4

=

[5

=

[6

=

[7

—

[8]

[9

—

[10]

(1]

[12]

[13]

[14]

[15]

[16]
[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

X. Li, D. Zhu, and P. Levy, “Predicting clinical outcomes with patient
stratification via deep mixture neural networks,” AMIA Summits on
Translational Science Proceedings, vol. 2020, p. 367, 2020.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

K. Huang, J. Altosaar, and R. Ranganath, “Clinicalbert: Modeling
clinical notes and predicting hospital readmission,” arXiv preprint
arXiv:1904.05342, 2019.

E. Alsentzer, J. R. Murphy, W. Boag, W.-H. Weng, D. Jin, T. Naumann,
and M. McDermott, “Publicly available clinical bert embeddings,” arXiv
preprint arXiv:1904.03323, 2019.

L. Rasmy, Y. Xiang, Z. Xie, C. Tao, and D. Zhi, “Med-bert: pretrained
contextualized embeddings on large-scale structured electronic health
records for disease prediction,” NPJ digital medicine, vol. 4, no. 1, p. 86,
2021.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language mod-
els are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877-1901, 2020.

J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,
D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat et al., “Gpt-4
technical report,” arXiv preprint arXiv:2303.08774, 2023.

H. Nori, N. King, S. M. McKinney, D. Carignan, and E. Horvitz,
“Capabilities of gpt-4 on medical challenge problems,” 2023.

K. Singhal, T. Tu, J. Gottweis, R. Sayres, E. Wulczyn, L. Hou,
K. Clark, S. Pfohl, H. Cole-Lewis, D. Neal et al., “Towards expert-
level medical question answering with large language models,” arXiv
preprint arXiv:2305.09617, 2023.

C. Wu, W. Lin, X. Zhang, Y. Zhang, Y. Wang, and W. Xie, “Pmc-llama:
Towards building open-source language models for medicine,” 2023.
O. B. Shoham and N. Rappoport, “Cpllm: Clinical prediction with large
language models,” arXiv preprint arXiv:2309.11295, 2023.

H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,
N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale et al., “Llama
2: Open foundation and fine-tuned chat models,” arXiv preprint
arXiv:2307.09288, 2023.

A. Venigalla, J. Frankle, and M. Carbin, “Biomedlm: a domain-specific
large language model for biomedical text,” MosaicML. Accessed: Dec,
vol. 23, no. 3, p. 2, 2022.

D. W. Hosmer Jr, S. Lemeshow, and R. X. Sturdivant, Applied logistic
regression. John Wiley & Sons, 2013.

L. Breiman, “Random forests,” Machine learning, vol. 45, pp. 5-32,
2001.

T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining, 2016, pp. 785-794.

E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang,
and W. Chen, “Lora: Low-rank adaptation of large language models,”
arXiv preprint arXiv:2106.09685, 2021.

S. D. Hicks, D. Zhu, R. Sullivan, N. Kannikeswaran, K. Meert, W. Chen,
S. Suresh, and U. Sethuraman, “Saliva microrna profile in children
with and without severe sars-cov-2 infection,” International journal of
molecular sciences, vol. 24, no. 9, p. 8175, 2023.

V. Sanh, A. Webson, C. Raffel, S. H. Bach, L. Sutawika, Z. Alyafeai,
A. Chaffin, A. Stiegler, T. L. Scao, A. Raja et al., “Multitask
prompted training enables zero-shot task generalization,” arXiv preprint
arXiv:2110.08207, 2021.

H. W. Chung, L. Hou, S. Longpre, B. Zoph, Y. Tay, W. Fedus, Y. Li,
X. Wang, M. Dehghani, S. Brahma et al., “Scaling instruction-finetuned
language models,” Journal of Machine Learning Research, vol. 25,
no. 70, pp. 1-53, 2024.

G. Han, W. Liu, X. Huang, and B. Borsari, “Chain-of-interaction:
Enhancing large language models for psychiatric behavior understanding
by dyadic contexts,” arXiv preprint arXiv:2403.13786, 2024.

O. Gramopadhye, S. S. Nachane, P. Chanda, G. Ramakrishnan, K. S.
Jadhav, Y. Nandwani, D. Raghu, and S. Joshi, “Few shot chain-of-
thought driven reasoning to prompt llms for open ended medical question
answering,” arXiv preprint arXiv:2403.04890, 2024.

Y. Qiang, X. Zhou, and D. Zhu, “Hijacking large language models via
adversarial in-context learning,” arXiv preprint arXiv:2311.09948, 2023.



	Introduction
	Methods
	Our Research Objective
	Data Collection
	Tabular Data for Traditional Models
	Serialization for New Conversational AI
	Generative LLMs
	Evaluation Setting
	Feature Importance Analysis

	Mobile Application
	Database Structure
	User Interface - Assessment
	User Interface - Patient and Clinician Results

	Experimental Results
	Training and Fine-Tuning Settings
	Effects of Serialization
	LLMs vs Traditional Machine Learning Methods

	Discussion
	References

