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Abstract—Advancements in conversational AI have created
unparalleled opportunities to promote the independence and
well-being of older adults, including people living with dementia
(PLWD). However, conversational agents have yet to demonstrate
a direct impact in supporting target populations at home,
particularly with long-term user benefits and clinical utility. We
introduce an infrastructure fusing in-home activity data captured
by Internet of Things (IoT) technologies with voice interactions
using conversational technology (Amazon Alexa). We collect 3103
person-days of voice and environmental data across 14 house-
holds with PLWD to identify behavioural patterns. Interactions
include an automated well-being questionnaire and 10 topics of
interest, identified using topic modelling. Although a significant
decrease in conversational technology usage was observed after
the novelty phase across the cohort, steady state data acquisition
for modelling was sustained. We analyse household activity
sequences preceding or following Alexa interactions through
pairwise similarity and clustering methods. Our analysis demon-
strates the capability to identify individual behavioural patterns,
changes in those patterns and the corresponding time periods.
We further report that households with PLWD continued using
Alexa following clinical events (e.g., hospitalisations), which offers
a compelling opportunity for proactive health and well-being
data gathering related to medical changes. Results demonstrate
the promise of conversational AI in digital health monitoring
for ageing and dementia support and offer a basis for tracking
health and deterioration as indicated by household activity, which
can inform healthcare professionals and relevant stakeholders
for timely interventions. Future work will use the bespoke
behavioural patterns extracted to create more personalised AI
conversations.
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I. INTRODUCTION

TODAY, more than 55 million people live with dementia
worldwide [1]. The ageing population is set to double

by 2050 [2], and the number of people affected by dementia
is predicted to reach 139 million by then [1]. Global care
costs of dementia are projected to surpass US$ 2.8 trillion
by 2030 [1]. In the UK alone, 25% of hospital beds are
occupied due to a dementia-related condition [3]. This global
health crisis has been exacerbated by the COVID-19 pandemic,
with vulnerable populations facing unprecedented isolation,
experiencing worsened mental health conditions, and receiv-
ing limited care [4], [5]. With limited resources for home
care services and no immediate cure in sight, the global
socioeconomic burden on healthcare systems is only expected
to become more critical with time. This, in turn, places an
increased psychological burden and strain on family members
and caregivers [6]. Dementia is one of the world’s major public
health challenges [7]. Advancements in IoT technologies en-
able frequent and contextually rich interactions between people
and the environment [8]. Several studies have been conducted
on creating smart environments, such as smart homes, and
eventually smart cities for urban living [9]. Furthermore, the
integration of artificial intelligence (AI) and IoT for smart
healthcare systems is growing dramatically, particularly for
behavioural, physical and mental health monitoring, welfare
interventions, or incident detection [10]–[13].

The development of home-based assistive technology, par-
ticularly IoT technologies and social robotics, has been at
the forefront of much research effort to date to promote
independence, well-being, and quality of life of older adults,
including people affected by dementia [14]–[16]. Monitoring
an individual’s home environment and daily routines – such as
motion activity in the house, meal preparation, and physiolog-
ical readings – combined with machine learning (ML) models
for detecting anomalous behaviour (i.e., deviations from the
baseline routine) can provide an effective means to alert
healthcare professionals or relevant stakeholders to potential
risks, such as a fall, illness, or social isolation [14], [17]–[19].
In this context, detecting changes in the daily routines of target
populations can offer important insights into their physical
and mental health status [20]–[22]. This way, caregivers can
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be better informed on the expected changes in the patient’s
behaviour, health status, and disease progression, which can
help mitigate further deterioration through early intervention.

Smart homes equipped with IoT technologies for activity
monitoring and habit assessment gather information in a
passive way, in that they do not directly interact or engage
with end-users. Conversational technology, however, may give
insights into subjective experiences and feelings by directly
querying users and engaging in conversations, which could
encourage behavioural changes. Research in conversational
AI technology, including smart speakers integrated into the
living environment, has experienced prolific growth in recent
years [23]. Commercially available instances include devices
such as Amazon Echo and Google Home, with constantly
evolving AI capabilities to understand human intent and
provide relevant responses. For example, these devices can
be used to set up medication reminders, self-management of
daily activities, provide entertainment (e.g., playing music or
games), or answer general questions as frequently as needed
(e.g., the current time, date, weather). This way, conversational
AI technology holds potential to promote the independence of
older adults including PLWD and help reduce the burden on
carers. Despite increasing interest in IoT monitoring systems
deployed in smart environments and conversational AI in their
respective fields, to the best of our knowledge, no research to
date has combined voice with in-home activity data to inspect
behavioural patterns. Furthermore, conversational agents have
yet to produce research results addressing utility from user
benefit and health monitoring perspectives, particularly in
dementia care at home.

This study aims to investigate the integration of conversa-
tional agents in smart environments. We argue the potential
of conversational agents for utility in health and well-being
monitoring to support households with people affected by
dementia. We discuss the role of conversational AI in health
and well-being monitoring, particularly for ageing and demen-
tia support, and highlight future directions to address current
challenges inhibiting long-term engagement and user benefits.

We believe the ability to map individual behaviour in
smart environments and detect deviations or changes from
previously observed patterns forms a strong baseline to person-
alise interactions. Furthermore, user-initiated interactions with
conversational agents often indicate wants, needs or overall
interests which could be mapped over time. For instance,
the conversational agent could proactively engage with end-
users at appropriate times to remind them of an activity
of interest or encourage behaviour. We argue the potential
of conversational technology to trace household behaviour,
directly query users for subjective perceptions of health and
well-being in the event of household activity changes, and
inform relevant stakeholders so that appropriate intervention
can be activated if necessary. We examine the daily contexts
in which 14 households with PLWD interact with a smart
speaker (Amazon Alexa) by fusing home activity data captured
by IoT technologies and remote health monitoring devices
with regular interactions with Alexa. Broadly, our analysis
inspects: 1) the use of Alexa in households with PLWD over
time, particularly to assess compliance with a daily well-being

questionnaire and prevalence of topics of interest beyond the
novelty phase; 2) activity sequences in the 10-minute period
preceding or following user-initiated interactions with Alexa
to identify behavioural patterns (see details in Section III-D),
changes in those patterns, and the corresponding time periods;
3) Alexa usage in the week after health events occurred
(information logged by a monitoring team, as elaborated in
Section III-A). The contributions of this paper are as follows:

• We introduce an infrastructure fusing environmental and
voice data using conversational technology to trace be-
haviour. While our target in this study is health and
well-being monitoring in the living environment, we
argue our approach could be implemented in other smart
environments to give insights into users’ behaviour.

• We demonstrate technical feasibility to identify be-
havioural patterns and their corresponding time periods
by analysing sequences of household activities which
precede or follow user-initiated interactions with conver-
sational AI.

• We offer the approach as a basis to adapt automated in-
teractions aimed at providing personalised and proactive
support for PLWD. This includes automated dialogues on
health and well-being (e.g., sleep quality, mood, agitation,
anxiety) to obtain medically relevant data and sustain user
engagement.

The rest of this paper is organised as follows. Section II
reviews related works and identifies the main gaps. Section III
describes the research questions that motivate this work, the
experimental design and analysis methods. Section IV presents
results in the form of user case studies. Section V discusses the
utility, limitations and future directions of the proposed data-
driven approach. Finally, conclusions are drawn in Section VI.

II. RELATED WORK

A. Conversational AI for Ageing and Dementia Care

There has been emerging interest in applying conversational
AI technology in healthcare applications [24], including for
home support of older populations [23]. By understanding
and responding to natural spoken language, conversational
agents present a versatile, intuitive, and natural user inter-
face with potential to promote and monitor health [25]. In
light of commercial viability, increased worldwide adoption,
and expanding AI capabilities, conversational technology –
including conversational agents and ubiquitous smart speakers
– holds significant promise to assist older people and those
affected by dementia in home settings. Commercially available
smart speakers such as Amazon Alexa and Google Home have
recently been explored as assistive tools to promote the inde-
pendence of older populations for routine management [26],
remote caring [27], or self-management of diabetes [28]. Voice
skills for Alexa have been proposed to support older adults
complete daily tasks, including medication reminders [27],
depression screening and dressing assistance [29], as well as
to send fall alerts to the caregiver [30].

There has been a growing interest in exploring how conver-
sational AI is used in home settings by target populations.
Qualitative studies have revealed initial insights into user
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experience with voice technology, patterns of daily use, and
why interest is oftentimes lost after the novelty effect [31]–
[33]. Current barriers inhibiting long-term adoption by older
adults have been reported in the literature. These encompass
the need for intelligent adaptation to user needs and cogni-
tive abilities over time, limitations in speech recognition for
effective verbal interaction, and privacy concerns related to
voice data gathering [23], [34]. Furthermore, voice technology
and analysis techniques from interactions, specifically looking
at linguistic and speech patterns, have been investigated as
a baseline for health monitoring and assessment of cognitive
decline, including dementia progression [35]–[38].

In light of the increased access to individual information
from IoT technologies in smart homes, the use of conversa-
tional AI systems able to engage with end-users in natural
interactions holds very strong promise to support ageing and
dementia care. However, the feasibility and utility of these
tools for health and well-being monitoring at home remain
largely untapped. Research to date lacks longitudinal data
collection from real-world contexts, e.g., people’s homes. Few
investigations have demonstrated a direct impact on supporting
the care needs of target populations. Additionally, the use of
home-based conversational technology in combination with
ML analysis for tracking behaviour and cognitive changes over
time remains underexplored. Further research with longitudi-
nal depth of analysis is needed, particularly addressing: 1)
adaptive interactions based on individual needs and changing
health conditions, 2) end-user long-term engagement with
conversational technology beyond the novelty phase, and 3)
clinical utility.

B. Activity Monitoring in Smart Homes

Opportunities in the use of smart home technology for
older populations and PLWD are well noted in the literature:
from diagnostic assessment to tailored care, health monitoring,
cognitive support, and completion of activities of daily living
(ADL) [14], [17], [39], [40]. Advances in IoT technologies
have spurred significant progress in activity recognition, habit
assessment, and anomaly detection within smart home envi-
ronments [41]–[45], including monitoring systems that aim to
support independent living of older adults and people affected
by dementia [19], [21], [46]–[48]. Despite the growing interest
and potential for enhancing dementia care using remote mon-
itoring systems, if not designed carefully and with end-user
involvement, these can be perceived as complex and intrusive
and may raise ethical concerns regarding privacy [23], [40],
[49]–[51]. These factors have been investigated through user-
centred design approaches focusing on fulfilment from the
stakeholder perspective [52]. Models capable of recognising
behavioural patterns are of particular relevance to our study.
Specifically, recognition of individual behavioural patterns can
be achieved by using ADL data to capture regular activity
sequences with temporal and spatial information (e.g., what
a user does every morning between 10:00 and 12:00) [53],
[54]. Such analysis can be used to detect behavioural changes
over time that could indicate changes in lifestyle, functional
abilities, and potentially cognitive decline [42], [55].

Recent work has proposed habit representation methods
using activity data collected from smart environments, focus-
ing on the sequence and duration of activities [53]. Along
similar lines, a real-time monitoring framework has been
proposed to recognize habits and detect anomalies with the
aim of supporting seniors living alone [54], yet no results
were obtained from data collection with target users. In [42],
sequence comparison and clustering methods have been ap-
plied to activity vectors to obtain regular daily routines. The
authors argued the future potential of a support system for
individuals who may require assistance with ADL, including
older populations. Further studies have analysed abnormal
behaviour of PLWD, identifying differences in routine patterns
within daily living contexts [47]. However, this analysis was
conducted using a limited dataset of three households. A
common gap identified across these studies is the lack of
longitudinal data collected from target populations in real-
world contexts. Furthermore, researchers have investigated
correlations between changes in daily routine and alterations in
cognitive and physical health [56]. The authors evaluated the
approach using continuous smart home sensor data collected
from 18 senior residents. While there has been work in each
of these areas individually, to the best of our knowledge,
no research to date has correlated in-home activity captured
by IoT technologies to voice interactions with conversational
technology to track behaviour.

The investigation of ADL patterns to understand human
behaviour comprises sequence comparison and clustering ap-
proaches to identify typical or unusual patterns from the
recognized activity sequences captured by IoT technolo-
gies [42], [57]. Sequence mining algorithms have been suc-
cessfully applied in bioinformatics to investigate related gene
sequences [58], [59]. Different similarity measures have been
studied in the context of sequence analysis, which can be
categorised as follows: distances between probability distri-
butions, counts of common attributes, and optimal matching
between sequences by considering the necessary operations to
transform one sequence into the other [60], [61]. The choice of
a suitable similarity measure for comparing activity sequences
to uncover patterns largely depends on the sequential features
being considered, e.g., temporal information, duration, and
order [18], [42]. Popular distance metrics are used to calculate
the similarity between pairs of categorical sequences, such
as the Hamming distance, which calculates the position-wise
comparison of pairs of sequences of equal length [62], and
the Levenshtein distance, given by the smallest number of
edit operations needed to turn one sequence into another [63].
These, however, are not suitable when dealing with temporal
event sequences where common and consecutive elements
ought to be considered. An alternative approach has been
proposed in [64] aimed at capturing the sequentiality of events.

C. Topic Modelling Techniques

Topic modelling, an unsupervised learning technique used
to identify hidden patterns from a text corpus [65], can be
applied to analyse text-based interactions with conversational
agents and further inspect user interests and preferences from
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Fig. 1. Pipeline illustration with the main steps used in the study and
the mathematical formulations. This includes: 1) the longitudinal fusion of
environmental and voice data, comprising a set of 13 distinct behavioural
events, as outlined in Table I; 2) the topic modelling approach employing
sentence embeddings and clustering techniques; 3) the analysis of activity
sequences on a participant level using a pairwise similarity measure and
4) clustering to discern behavioural patterns. Additionally, notes from the
monitoring team are used to explain and validate the quantitative findings.

conversation topics over time. Conventional models, typically
based on Latent Dirichlet Allocation (LDA), employ a bag-of-
words model, wherein each unique word is modelled indepen-
dently from the others [66]. These models, however, involve
simplistic assumptions and pre-processing steps that often dis-
miss semantic relationships between words, especially when
analysing short texts, resulting in the learned topics being
less coherent and interpretable [67], [68]. With recent devel-
opments in natural language processing, pre-trained language
models have been proposed to capture semantic and contextual
information from text more effectively (e.g., BERT [69],
GPT3 [70]). Similarly, Top2Vec [71] and BERTopic [72]
have been proposed to infer topics while keeping the original
structure of text with high efficacy [73], [74].

III. METHODS

A. Preliminary

The UK Dementia Research Institute Care Research and
Technology Centre (UK DRI-CR&T) has created a unique in-
frastructure for gathering environmental data from households
with PLWD to enhance independence and safety at home. The
UK DRI-CR&T brings together a multidisciplinary team of
doctors, engineers, and scientists that develop and study new
technologies for effective use in smart homes, deploy them in
real-world evaluation studies following iterative user-centred
design approaches, and deliver them to PLWD and their carers.
A range of systems are studied to track a person’s behaviour
and health at home, predict when problems might arise, and
provide intervention solutions while allowing continuous inter-
action between PLWD, caregivers, and medical professionals.

In the context of this study, we define a behavioural
event as a sensor trigger captured in a smart home with an
associated timestamp. Each behavioural event indicates an

activity (e.g., motion in the house, taking vitals, interact-
ing with a voice agent). Following a previous approach for
activity data collection in households with PLWD [75], we
analysed 13 behavioural events (outlined in Table I) captured
by IoT technologies, remote health monitoring devices, and
the Amazon Alexa smart speaker from 14 households with
PLWD. As part of our recruitment and deployment protocol, a
monitoring team and a design team maintained communication
with participants to clarify the purpose of data collection
and the capabilities of the devices deployed in order to
mitigate potential ethical concerns regarding data privacy. The
design team encouraged PLWD to complete a daily well-being
questionnaire. 1 The questionnaire comprised six questions
assessing the subjective perception of mood, agitation, anxiety,
sleep quality, tiredness, and activity plans. PLWD were further
encouraged to interact with Alexa freely (e.g., ask for the
weather, news, or entertainment). Additionally, as part of our
experimental design, a monitoring team in regular contact
with participants noted individual health events (e.g., falls,
infections, hospitalisations).

We conducted a household analysis and did not identify
individuals to protect privacy. We were interested in investigat-
ing behaviour in households with PLWD using conversational
technology. We consider an activity sequence as a sequence of
ordered behavioural events that occur in the 10-minute period
(defined based on domain knowledge) preceding or following
Alexa use, with an associated start and end timestamp (elab-
orated in Section III-E). We refer to a behavioural pattern as
a set of activity sequences with a high degree of similarity
(see details on the similarity approach used to quantify the
degree of similarity between pairs of activity sequences in
Section III-E) that occur in the household for a period of at
least three weeks, determined by domain knowledge (e.g., a
user takes vitals in the morning before interacting with Alexa
for a month). When a new set of activity sequences emerges
by changing the previously observed pattern (evidenced by
a lower degree of similarity compared to adjacent activity
sequences), we consider it a behavioural change (e.g., a
user stops taking vitals before taking to Alexa, which had
previously been identified as a behavioural pattern). We are
particularly interested in discovering behavioural patterns in
households with PLWD beyond the novelty phase, i.e., after
the first three months, in line with other studies using home-
based robotic technology [76]. The proposed pipeline of
analysis is illustrated in Figure 1.

B. Research Questions

This study is driven by the following research questions:
• RQ1: Will end-users sustain engagement with conversa-

tional technology beyond the novelty phase (i.e., the first
three months)? We examine Alexa usage in households
with PLWD over time. Particularly, we assess compli-
ance regarding the sustained use of a daily well-being
questionnaire and apply topic modelling to inspect the
prevalence of topics over time.

1An Alexa Skill was developed for the purpose of the ongoing research
conducted by the UK DRI-CR&T.
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TABLE I
THE 13 BEHAVIOURAL EVENTS CONSIDERED IN THIS ANALYSIS, CAPTURED BY IOT TECHNOLOGIES, REMOTE HEALTH MONITORING DEVICES, AND THE
ALEXA SMART SPEAKER. EACH BEHAVIOURAL EVENT INDICATES AN ACTIVITY. NOTE WE GROUPED ALL PHYSIOLOGICAL READINGS INTO THE SAME

VITALS EVENT AND CONSIDERED THREE ALEXA BEHAVIOURAL EVENTS.

Behavioural event Devices Activity
Lounge Passive infrared sensors Motion
Kitchen Passive infrared sensors Motion

Bedroom Passive infrared sensors Motion
Bathroom Passive infrared sensors Motion
Hallway Passive infrared sensors Motion
Bed in Sleep mat Getting into bed

Bed out Sleep mat Getting out of bed
Front door Door sensor Door opening/closing
Back door Door sensor Door opening/closing

Vitals Pulse oximeter, scale, thermometer, blood pressure cuff Taking vitals
Start questionnaire Amazon Alexa Interacting with voice agent
End questionnaire Amazon Alexa Interacting with voice agent

Random interactions Amazon Alexa Interacting with voice agent

• RQ2: Can behavioural patterns in households with
PLWD be traced by mapping in-home activity and voice
interactions with conversational technology? We examine
pairwise similarity of activity sequences preceding or
following Alexa use. We identify behavioural patterns,
changes in these patterns, and their corresponding time
periods.

• RQ3: Do participants continue using Alexa following
clinical outcomes (e.g., falls, infections, hospitalisations)?
We inspect whether households with PLWD continue
interacting with Alexa in the week following a health
event.

C. Study Sample

In this research, we collected 3103 person-days of inter-
actions with Alexa and in-home activity data captured by
IoT technologies across 14 households with PLWD as part
of ongoing research in dementia care conducted by the UK
DRI-CR&T. Participants (75-94 years, 4 females, 10 males)
lived in the UK, had a diagnosis of dementia or mild cognitive
impairment (MCI), and were living in their own homes with
a caregiver during the time of data collection. Table II lists
full participant and data collection information. The total
timeframe of data collection varied across participants due
to two different recruitment stages followed by Alexa device
deployment. The study was ethically approved by the Surrey
Borders Research Ethics Committee.

D. Technology and Data Overview

This study fuses in-home activity data and voice interac-
tions with conversational technology to analyse behaviour in
households with PLWD. Each household included a range
of IoT technologies and remote health monitoring devices,
namely: passive infrared sensors installed in the bedroom,
the lounge/living room, the kitchen, the bathroom, and the
hallway; door sensors placed on the front door and the back
door to detect when a door was opened or closed; a sleeping
mat to collect information about a person getting in or out
of bed; physiological devices to take vital signs, including a
pulse oximeter, scale, thermometer, and blood pressure cuff;

and the smart speaker Amazon Echo Show. The activity data
related to motion, taking vitals, opening/closing doors, getting
in/out of bed (as presented in Table I) was extracted offline
from DCARTE [77], a framework that allows continuous
and anonymized data access by DRI-CR&T researchers. The
interaction data comprises text utterances of what users said
to Alexa and the corresponding timestamp. We consider two
types of data from Alexa interactions, as follows:

• questionnaire: participants were encouraged to trigger
a well-being questionnaire on a daily basis. This data
type was used specifically to inspect the frequency and
time of questionnaire completeness over time. Therefore,
we extracted the timestamps of the start and end of the
questionnaire and excluded answers to each question.

• random interactions: all the Alexa interactions excluding
the start, end, and answers to the well-being question-
naire. This includes free use of the smart speaker across
different topics, e.g., asking for the news, weather, time,
setting reminders, playing music, among others. This type
of Alexa interactions was used to examine participants’
topics of interest over time.

The activity and interaction datasets were aggregated,
grouped for each participant, and sorted by timestamp, re-
sulting in a total of over 1.5 million unique observations
collected over 3103 person-days (see details in Table II).
Each observation represented one event with a timestamp. The
analysis encompassed a total of 13 different behavioural events
(listed in Table I) related to user-initiated interactions with
Alexa, location in the house, bed in/out information, opening
or closing of front/back door, and vitals. 2 Furthermore, we
used the dates of individual health events logged by a moni-
toring team (e.g., falls, infections, hospitalisations) to examine
whether users continued using Alexa in the week following a
health event.

E. Pairwise Similarity of Activity Sequences

This study investigates behavioural patterns by analysing
in-home activity data and voice interactions using conver-
sational AI technology. The analysis focused on calculating

2Note all physiological measurements were grouped into one vitals event.
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TABLE II
PARTICIPANT COHORT AND DATA ACQUISITION DETAILS. TOTAL DAYS REFERS TO THE DURATION OF DATA COLLECTION, FROM THE FIRST TO THE LAST
DATE OF ALEXA INTERACTIONS, HOWEVER, PARTICIPANTS DID NOT USE THE DEVICE DAILY. THE TOTAL NUMBER OF ALEXA TRIGGERS ENCOMPASSES

BOTH THE QUESTIONNAIRE TRIGGER AND RANDOM INTERACTIONS THROUGHOUT THE DATA COLLECTION PERIOD. UNIQUE EVENTS COMPRISE THE
AGGREGATE RAW DATA OF BEHAVIOURAL EVENTS FOR EACH PARTICIPANT INCLUDING ALEXA INTERACTIONS.

Participant Gender Diagnosis Total days Start date End date Alexa triggers Unique events
P1 M Vascular dementia 169 2021-05-07 2021-10-23 202 100436
P2 M Dementia in Parkinson’s 388 2021-05-13 2022-06-05 1824 239611
P3 M Mild Cognitive Impairment 381 2021-05-16 2022-06-01 96 214879
P4 M Alzheimer’s Disease 387 2021-05-14 2022-06-05 448 210271
P5 M Alzheimer’s Disease 244 2021-09-28 2022-05-30 368 105326
P6 F Alzheimer’s Disease 260 2021-09-08 2022-05-26 600 95762
P7 F Alzheimer’s Disease 263 2021-09-08 2022-05-29 555 89475
P8 M Alzheimer’s Disease 23 2021-09-08 2021-10-01 19 9716
P9 F Alzheimer’s Disease 102 2021-09-08 2021-12-19 102 33569
P10 F Alzheimer’s Disease 107 2021-09-20 2022-01-05 69 75
P11 M Alzheimer’s Disease 73 2021-09-25 2021-12-07 72 15687
P12 M Lewy Body Dementia 220 2021-10-28 2022-06-05 2125 131032
P13 M Alzheimer’s Disease 244 2021-10-05 2022-06-06 610 152162
P14 M Alzheimer’s Disease 242 2021-10-05 2022-06-04 656 125112

the pairwise similarity of activity sequences near (i.e., in the
10-minute period preceding or following) Alexa triggers. We
further identify behavioural patterns by grouping activity se-
quences with higher or lower similarity scores. We considered
an activity sequence, s⃗, as a vector of temporally ordered
sensor triggers (i.e., behavioural events):

s⃗ = [s1, ..., sn], si ∈ E,

where E is the finite set of 13 behavioural events considered
in this study (see Table I), and si is the event in position i of
the sequence.

Each activity sequence includes temporal window and du-
ration parameters, in addition to a defined target event, i.e.,
the Alexa type of interaction: Start stands for the trigger
of the well-being questionnaire; End denotes the end of the
questionnaire; Random stands for other utterances from free
use of the smart speaker (note different topics were considered,
as elaborated in Section III-F). Through exploratory data
analysis, we chose an optimal window of five consecutive
events (n=5) and filtered sequences by a maximum duration of
10 min near the target trigger. Note the duration of each event
varies. Therefore, activity sequences may comprise repetitive
events as long as the total vector size is five (i.e., n = 5)
and the maximum duration is 10 min. Below are examples of
equal-length sequences that preceded the trigger of the daily
questionnaire (i.e., sn = ‘Start’) for a given participant:

Lounge > Kitchen > Lounge > Lounge > Start
V itals > V itals > Kitchen > Lounge > Start

To quantify the level of similarity between activity se-
quences composed of chronologically ordered behavioural
events, s⃗, we calculated pairwise sequence similarity. We were
particularly interested in computing similarity by capturing the
temporal sequence of events. Therefore, we applied Ordering-
based Sequence Similarity [64], a categorical sequence mining
technique which considers the number of common elements
and their order in the sequence. Let s⃗A = [sA1, ..., sAn] and
s⃗B = [sB1, ..., sBn] be two equal-length activity sequences.
The similarity score between sA and sB (the vector symbol
was omitted for simplicity) was calculated as follows:

sim(sA, sB) = 1− f(sA, sB) + g(sA, sB)

nA + nB
, (1)

where f(sA, sB) quantifies the similarity in the position of
elements in the sequence (i.e., the order), g(sA, sB) counts
the number of non-common elements, and nA and nB denote
the vector size of sA and sB , respectively.

For a behavioural event e ∈ E and activity sequences sA
and sB , let Le

A be the number of times e appears in sA, and
seA(k) the kth position of e in sA. CAB denotes the set of
common events in sA and sB . UAB denotes the set of events
that appear in sA but not in sB . Then, f(sA, sB) and g(sA, sB)
are calculated as follows:

f(sA, sB) =

∑
e∈CAB

(
∑Ke

AB

k=1 |seA(k)− seB(k)|)
max(nA, nB)

, (2)

and
g(sA, sB) =

∑
e∈UAB

Le
A +

∑
e∈UBA

Le
B , (3)

where Ke
AB = min(Le

A, L
e
B).

Using the two activity sequences shown above as an ex-
ample with simplified notation sA = {L,K,L, L, S}, sB =
{V, V,K,L, S}: since L, K and S appear in both sequences,
CAB = {L,K, S}. Looking at the position of common events
in each sequence, sLA = {0, 2, 3}, sLB = {3}, sKA = {1},
sKB = {2}, sSA = sSB = {4}, therefore f(sA, sB) = (|0− 3|+
|1−2|+|4−4|)/5 = 0.8. Calculating the non-common events,
V appears twice in sB , hence UBA = {V } and g(sA, sB) = 2.
Following Equation 1, sim(sA, sB) = 1−(0.8+2)/10 = 0.72.

We predefined the target event, s5, to analyse activity
sequences in the 10-minute temporal window preceding Alexa
use (e.g., for the activity sequences preceding the trigger of
the questionnaire, s5 = Start). We further analysed similar-
ity matrices, on a participant level, based on the pairwise
similarity scores computed. Higher values within these ma-
trices indicate a higher degree of similarity between pairs
of activity sequences. Subsequently, similarity matrices were
used to cluster activity sequences by grouping those with
higher or lower similarity scores. Given that the data points
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Fig. 2. Top 5 words in each topic. These words were selected based on
their proportion relative to all words within their respective topic. The x-axis
measures this proportion. Note the undefined topic contains many different
utterances, thus, all words among this topic have low Term Frequency - Inverse
Document Frequency (TF-IDF) scores.

to cluster (i.e., the activity sequences) are not in a vector
space, we applied K-Medoids clustering, a method based on
the partition around medoids algorithm [78]. The silhouette
method was used to determine the number of clusters. Alto-
gether, our approach involved computing pairwise similarity
and performing clustering of activity sequences to identify
behavioural patterns and examine changes in behaviour using
conversational technology at home.

F. Topic Modelling

We applied topic modelling methods to analyse the Alexa
interactions of type random (i.e., Alexa usage that is not related
to the well-being questionnaire, as described in Section III-D).
Specifically, we used the pre-trained language model Sen-
tenceTransformer [79] to embed each user utterance into a
768-dimensional vector. We applied K-Means clustering 3 in
two iterations on the obtained utterance vectors and used
the silhouette method to choose the number of clusters. 4 In
the first round, we applied the K-Means clustering model to
cluster the vectors into 16 clusters. Manually inspecting these
clusters, we identified a set of generic utterances (the undefined
topic). Additionally, we combined clusters with similar topics,

3We conducted preliminary research on topic modelling and found non-
negative matrix factorization (NMF) and LDA produced unsatisfactory results

4We compared the performance of different clustering methods by com-
puting the silhouette score as a measure of coherence. K-Means marginally
outperformed Hierarchical Clustering, Gaussian Mixture Models, and Spectral
Clustering (see details in Supplementary Table 1).

resulting in a total of eight clusters, including the undefined
topic cluster. In the second round, we specifically focused on
the undefined cluster from the first round and further clustered
it into 15 topics using K-Means. We merged similar topics
from the second round of K-Means clustering with those
identified in the first round, integrated two newly emerged
clusters and identified the new undefined topic cluster. Figure 2
shows the identified topics and the most prevalent words
in each topic. In total, we identified 10 topics from Alexa
interactions across the cohort of participants as follows: 1)
answers: participants may be prompted to confirm Alexa
actions or speech recognition; 2) control commands: voice
commands used to control Alexa (e.g., change the volume,
start or stop actions); 3) entertainment: participants ask Alexa
to play music, radio, or games; 4) timers: participants ask
Alexa to set timers; 5) weather: participants ask for weather
information; 6) questionnaire attempt: participants attempt to
start the daily questionnaire, but Alexa does not recognise
participants’ speech correctly; 7) reminders, time and date:
participants ask about the current time, date, or day of the
week, to set reminders or alarms; 8) news: participants ask
for general news or headlines of the day (e.g., ’tell me the
latest news’), news from specific channels (e.g., ’what’s on
BBC One tonight’), or news on specific themes (e.g., ’news
on prince harry’); 9) greetings: participants greet Alexa; 10)
undefined: all remaining Alexa interactions of type random.

IV. RESULTS

We analysed over 1.5 million events captured from IoT tech-
nologies, remote health monitoring devices, and the Amazon
Alexa smart speaker over 3103 person-days across a unique
cohort of 14 households with PLWD. We first investigated
trends in conversational technology usage over time across the
14 households with PLWD, particularly beyond the novelty
phase. We selected four participants (i.e., P2, P6, P12, and
P14) that interacted the most with Alexa (see the total number
of Alexa triggers in Table II) to report a series of case studies.
We examined the similarity of activity sequences preceding
or following user-initiated interactions with Alexa to identify
individual behavioural patterns. We also inspected Alexa usage
in the week following the occurrence of health events across
the cohort.

A. Prevalence of Interactions with Conversational AI Beyond
the Novelty Phase

We aimed to examine the use of Alexa in households with
PLWD over time. We inspected the novelty effect across the
cohort and which topics of interest prevailed after the first
three months of usage (see RQ1 in Section III-B). Specifically,
we analysed the weekly average number of Alexa interactions
both during and beyond the novelty phase and examined the
prevalence of the 10 identified topics (see Section III-F) in
participants’ interactions over time.

Figure 3 shows an overview of Alexa interaction data across
the total usage timeframe for P12 and P14. P12 interacted with
Alexa consistently over time, showing an increased interest
in its capabilities during the novelty phase, as evidenced by
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P12(a)

(b) P14

Fig. 3. Alexa interaction data across the total usage timeframe for (a) P12 and (b) P14. The left plots show the daily counts of Alexa events per day. The
right plots show monthly usage of both types of interactions considered - questionnaire triggers and random interactions - over the duration of Alexa use. N
triggers quantifies the total number of interaction triggers.

a rise in random interactions. However, there was a gradual
decline in overall Alexa usage during the post-novelty phase
(i.e., after the first three months). P12’s daily interactions
with Alexa peaked in December 2021 (N triggers = 42)
during the novelty period. While P14 used Alexa consistently
over time, there were noticeable intervals of consecutive non-
interaction days. P14’s daily triggers peaked in November
2021 (N triggers = 27), recorded on the second day of using
Alexa. Furthermore, participants’ engagement with the well-
being questionnaire varied across the cohort. For instance,
P14 consistently completed the questionnaire on a monthly
basis, with a decrease in engagement only noticeable after
seven months of use, in May 2022. Conversely, P12 gradually
reduced the frequency of questionnaire triggers and stopped
completing it after March 2022.

We compared the weekly average number of Alexa in-
teractions (of both questionnaire and random types) in the
three months of the novelty phase to the weekly average
number of interactions in the post-novelty phase. Thus, we
only considered participants with a total Alexa usage time of
at least four months and evaluated the novelty effect across a
total of 11 participants. We observed a significant decrease in
overall Alexa usage after the novelty period across participants
(Wilcoxon signed-rank, W = 5, pcorr = 0.02, CLES = 0.66)
5. We further observed a significant decrease in compliance
with the daily well-being questionnaire in the post-novelty
period across participants (Wilcoxon signed-rank: W = 0, pcorr
= 1.95e-03, CLES = 0.72). Notably, of the participants who
continued using Alexa beyond the novelty phase, two stopped
completing the well-being questionnaire after the first month
of usage. Focusing on the four participants who sustained the
use of Alexa for at least five months beyond the novelty phase
(i.e., total technology usage exceeding eight months), Figure 4
shows an overall decline in Alexa usage in the post-novelty
period for these households. Notably, the weekly number of

5False discovery rate was applied, hence the corrected p-values are com-
pared against the significance level α = 0.025. We also report the common-
language effect size (CLES).

Alexa triggers peaked during the novelty phase. For example,
P2’s weekly interactions with Alexa reached a peak in the
first week of usage (13th May 2021, N triggers = 302, as
highlighted in a grey box in Figure 4). However, there was a
noticeable decrease in usage after the first month. Interestingly,
interactions ceased for a 4-week period in February 2022.
Health notes from the monitoring team indicate that P2 was
hospitalised between 3rd February and 23rd February 2022,
which explains the absence of Alexa usage at home during this
period. We further observed an increased number of weekly
interactions in April 2022. This surge coincided with P2’s
return home on 31st March 2022 after a period of hospital-
isation (information logged by the monitoring team). Overall,
these findings indicate a decline in the use of conversational
technology after the novelty effect across the cohort.

We next investigated the prevalence of topics within Alexa
interactions of type random (see the interaction data types used
in this study in Section III-D), particularly beyond the novelty
effect. Figure 5 illustrates the proportion of topics triggered for
P2, P6, P12, and P14. After the novelty phase, P2 used Alexa
more frequently to request weather information in the morning
(85.26% of weather triggers were observed in the morning
during this period; see details in Supplementary Table 2)
and set timers during the morning (53.7%), particularly after
January 2022 (refer to Figure 5). Topics related to news,
entertainment, and reminders were also frequently triggered
over time. P6 showed increased interest in using Alexa for
entertainment in the morning, both during (55.56%) and after
(51.85%) the novelty period, and asking about current date,
time, and reminders in the morning during the first three
months of usage (66.67%), a trend that prevailed in the
post-novelty phase (52.63%). P12 and P14 showed consistent
interest in utilising Alexa for entertainment. During the post-
novelty phase, P12 reduced the usage of reminders while
increasing the frequency of weather-related queries, partic-
ularly in the morning (62.5%). Furthermore, P14 frequently
prompted news-related topics in the morning, which prevailed
after the novelty phase (66.67%).
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Fig. 4. Weekly average number of Alexa interactions on a monthly basis
and total weekly interactions for P2, P6, P12, and P14. N triggers quantifies
the total number of triggers. The vertical dashed line separates the novelty
phase (first three months of usage) from the post-novelty period for each
participant. Grey boxes in each plot represent the peak with the highest number
of weekly interactions and total Alexa triggers. Note the start date and Alexa
usage periods varied across participants (as outlined in Table I), therefore, we
standardised usage based on the first Alexa interaction for each participant.

Overall, despite the variations in usage across the cohort,
participants continued to find certain capabilities of Alexa
engaging, using them regularly. While the verified decrease
in Alexa usage – oftentimes due to unmet expectations or
perceived lack of utility [80] – aligns with previous research
involving older demographics [32], [33], results suggest fu-
ture improvements are needed in the design of home-based
conversational agents. Specifically, addressing long-term user
engagement and facilitating more personalised interactions
could foster better integration in households with PLWD.
Based on these findings, we discuss challenges and design
opportunities for future conversational agents in Section V.

B. Behaviour Discovery from Activity Sequences

We aimed to investigate the daily contexts in which Alexa
was triggered in households with PLWD to identify be-
havioural patterns, changes in those patterns, and the cor-
responding time periods (see RQ2 in Section III-B). We

Fig. 5. Proportion of topics triggered among P2, P6, P12, and P14 for the
different months of Alexa usage.

analysed activity sequences in the 10-minute period preceding
or following Alexa triggers in households with PLWD. We first
computed the probability of behavioural events in the activity
sequences considering the two types of Alexa triggers, i.e.,
the questionnaire and random interactions. Figure 6 shows, for
four representative users (i.e., P2, P6, P12, P14), the probabil-
ity of each behavioural event, captured by IoT technologies, in
sets of activity sequences in the 10-minute temporal window
considered (see details in Section III-E).

Our design team reached out to participants to ask for the
device location(s) in the house. By inspecting the probability
of behavioural events in the activity sequences, we were able
to corroborate the primary locations of the Alexa smart speaker
in participants’ households. P2 and P14 had Alexa placed in
the Lounge, as indicated in Figure 6 by higher probabilities
of Lounge events before and after Alexa triggers (see darker
areas for P2 and P14). P6 and P12 had Alexa located in
the Kitchen, which is supported by higher probabilities of
Kitchen events (see darker areas for P6 and P12). The higher
probability values found for the aforementioned behavioural
events held true for the three types of activity sequences
considered, specifically: A) activities preceding the trigger of
the questionnaire, B) activities following the completion of
the questionnaire, and C) activities prior to random Alexa
interactions, as depicted in Figure 6. In addition to primary
Alexa locations, the frequent occurrence of certain events, such
as Kitchen for P2 or Hallway for P12, suggests that these
activities often occurred near the time of Alexa interactions
(i.e., within the 10-minute period before or after triggering
Alexa). For example, P2’s most common sequence of activities
preceding the activation of the well-being questionnaire (s5 =
Start, column A in Figure 6) was as follows: Kitchen >
Lounge > Kitchen > Lounge > Start. This indicates the
questionnaire was typically completed in the lounge after P2
had moved from the kitchen to the lounge.

We were further interested in identifying behavioural pat-
terns and the associated time periods (on a participant level)
through in-home use of conversational technology. We com-
puted the pairwise similarity for each pair of activity se-
quences, as detailed in Section III-E. This allowed us to form
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Fig. 6. Probability (%) of each behavioural event (13 in total) in the 10-
minute period preceding or following Alexa use for P2, P6, P12, and P14.
For each participant, we looked at three target Alexa events represented as
columns in the table, A: comprises activity sequences that preceded the start
of the well-being questionnaire s5= Start; B: comprises activity sequences
that followed the completeness of the well-being questionnaire s1= End;
C: comprises activity sequences that preceded any Alexa interaction of type
random s5= Random. For each participant and activity sequence type (A, B,
C) the probability of an event si ∈ E (the finite set of 13 events) is calculated
by summing occurrences of event si in all sequences and dividing by the
total number of possible occurrences. Note the total number of occurrences
excludes the first or last event of each sequence, s1 or s5, since it was
predefined and equal for all sequences in consideration.

a distinct similarity matrix for each participant. Each data
point in the matrix corresponds to an activity sequence of
five behavioural events that occurred in the 10-minute period
preceding or following Alexa use. Pairwise similarity scores
were subsequently used to cluster the activity sequences, using
the K-Medoids method, to identify groups of similar activity
sequences and inspect differences between clusters. Because
data points in each similarity matrix are chronologically or-
dered, we were able to identify common household behaviour
during specific time periods, i.e., groups of activity sequences
with a high degree of similarity within the same time period.

Figure 7a shows the similarity matrix with activity se-
quences that preceded P2’s random Alexa interactions from
May 2021 until June 2022. The selected border A was further
inspected. We used the K-Medoids clustering method to iden-
tify clusters in the similarity matrix. We identified four distinct
clusters in P2’s activity sequences. One of these clusters
(denoted as cl1 for clarity) became more prominent during a
6-week period, labelled as X1. During X1, 84.69% of activity
sequences belonged to the dominant cluster, cl1. Moreover,
outside of period X1, only 11.88% of activity sequences
belonged to cl1. Further details are presented in Supplementary
Table 3 in Appendix. This indicates that during X1, there
was a distinct pattern in P2’s activity sequences. Notably, the
probability of Bedroom events in activity sequences within
cl1 increased to 25.75% compared to a maximum of 0.1%
in other clusters (Supplementary Table 4). Additionally, the
probability of Lounge events declined from a maximum of
41.50% in other clusters to 1.02% in cl1. Furthermore, during
X1, 61.06% of household activity preceding Alexa interactions
of type random occurred in the morning.

These findings suggest a shift in device location from the
lounge to the bedroom in P2’s household and a trend towards
triggering Alexa for random interactions in the morning. This
observation aligns with the higher probability of Bedroom
events for activity sequences preceding Alexa interactions of
type random, as observed in Figure 6 (14.54%, column C).
Importantly, our design team verified with P2 that the Alexa
device had been moved to the bedroom during period X1 due
to health and caregiving circumstances.

We extend the aforementioned approach and interpretation
to other individual similarity matrices. Figure 7b shows the
similarity matrix containing P2’s activity sequences that pre-
ceded the questionnaire trigger from May 2021 until January
2022. The selected border, B, was further analysed. Note that
even though P2 stopped completing the daily questionnaire in
late January 2022, the usage of Alexa for random interactions
remained consistent until the end of our data collection pe-
riod, as observed in the similarity matrix previously analysed
(Figure 7a). One of the three clusters identified using K-
Medoids (denoted as cl3) was found predominant during a
4-week period, labelled as X2. During X2, 77.78% of data
points belonged to cluster cl3. Outside of X2, the proportion
of activity sequences associated with cl3 was 21.29% (Supple-
mentary Table 3). Furthermore, our analysis revealed 94.74%
of household activity preceding the questionnaire trigger dur-
ing X2 took place in the morning. The increased probability
of Vitals events in activity sequences within cl3 (47.87%
compared to a maximum of 5.28% in other clusters, see details
in Supplementary Table 5) suggests a behavioural pattern of
taking vitals before completing the daily questionnaire in the
morning.

Similarly, Figure 7c shows the similarity matrix representing
P14’s household behaviour before starting the Alexa well-
being questionnaire. The selected borders, C and D, were
further inspected. We identified four clusters using K-Medoids,
two of which (denoted as cl1 and cl4) were prominent across
two different 11-week time periods, denoted as X3 and X4.
During X3, 64.81% of data points fell within cluster cl4,
and the proportion of activity sequences associated with cl4
outside of X3 was 29.51%. During X4, 75% of data points
were associated with cluster cl1, while only 24.17% of data
points outside of X4 belonged to cl1 (Supplementary Table 3).
Furthermore, all activity sequences within both X3 and X4
were concentrated in the morning hours. Period X3 suggests
P14 was consistently in the lounge before completing the
questionnaire (the probability of Lounge events within cl4
is 89.08%). On the other hand, period X4 indicates the
predominance of activity in both the lounge (50% within
cl1) and kitchen (38.73% within cl1) (Supplementary Table
6). Overall, these two periods suggest a behavioural pattern
related to the use of conversational technology for the pur-
pose of completing a daily questionnaire. Specifically, P14
routinely triggered the questionnaire in the morning, while at
the lounge, or following activity in the kitchen. Furthermore, a
noticeable darker area within period X3 on the matrix suggests
a change in behaviour, spanning nine days in early December
2021. During this period, we verified P14’s activity sequences
consistently incorporated the Vitals event, e.g., Lounge >
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Fig. 7. Similarity matrices of activity sequences near the trigger of Alexa: (a) similarity of activity sequences that preceded interactions of type random (s5
= Random) from May 2021 until June 2022 for P2; (b) similarity of activity sequences that preceded the activation of the well-being questionnaire (s5 =
Start) from May 2021 until January 2022 for P2; (c) similarity of activity sequences that preceded the activation of the well-being questionnaire (s5 = Start)
from October 2021 until May 2022 for P14. The axis numbers denote activity sequences preceding Alexa use which are chronologically ordered. The dates
of selected periods are represented below each matrix as well as the dates of the first and last activity sequences analysed. Lighter tones represent a high
degree of similarity and darker tones represent a low degree of similarity. The colour bar applies to all matrices.

Lounge > V itals > V itals > Start. This suggests that P14
routinely took vitals in the 10 min before completing the Alexa
questionnaire, a pattern that is captured as highly dissimilar
compared to the surrounding activity sequences.

By fusing in-home activity data with voice interactions
using conversational technology, our analysis demonstrated
technical capability in establishing behavioural patterns in
households with PLWD, changes in those patterns and the
corresponding time periods. We believe the ability to map
behavioural trends forms a basis to personalize future inter-
actions. By tracking the user’s daily contexts at home, the
conversational agent could proactively initiate conversations
about relevant domains at appropriate times. Moreover, by
detecting changes in behaviour (compared to previously identi-
fied patterns), the conversational agent could inform healthcare
professionals and relevant stakeholders, ultimately enhancing
health and well-being monitoring of PLWD at home.

C. Use of Conversational AI in Smart Homes Following
Clinical Outcomes

We also investigated whether households with PLWD con-
tinued using Alexa during the week following the occurrence
of health events (see RQ3 in Section III-B). We used the
dates of individual health events (e.g., falls, infections, hos-
pitalisations) logged by a monitoring team in regular contact
with participants. We considered user-initiated triggers of both
the questionnaire and random Alexa interactions, specifically
in the seven days after the occurrence of a health event. A
total of 38 health events were evaluated across the cohort,
which comprised events that took place on a day at home
(e.g., falls), events of longer duration than a day during which
PLWD stayed at home (e.g., Covid-19 infections), and events
of longer duration than a day out of home (e.g., hospitalisa-
tions). Furthermore, the total events considered in this study

corresponded to 10 participants (no health events were logged
by the monitoring team for the remaining participants).

We observed participants continued interacting with Alexa
even after exhibiting a clinical event (Wilcoxon Signed Rank:
W = 561, pcorr = 8.06e-07 6). The same observation was
verified when inspecting single dates and periods of health
events during which PLWD stayed at home (Wilcoxon Signed
Rank: W = 435, pcorr = 1.92e-06). Interestingly, participants
continued using Alexa in the 7-day period after returning
home from hospitalisations (Wilcoxon Signed Rank: W = 10,
pcorr = 3.39e-02). Despite the limited number of observations
analysed across the cohort, results suggest the potential for
conversational agents to provide personalised assessments of
health and well-being after the occurrence of health events,
which we discuss in the next section.

V. DISCUSSION

In this study, we fused in-home activity data captured by
IoT technologies and remote health monitoring devices with
interactions with conversational technology. We analysed 3103
person-days of environmental and voice data across a unique
cohort of 14 households with PLWD or MCI. In this section,
we summarise the main findings of the study, their implication
for future research and real-world translation of conversational
agents for utility in digital health monitoring. We also outline
the limitations of our investigation and highlight future direc-
tions.

A. Summary of Findings
We investigated the integration of conversational AI tech-

nology in smart environments. Our target in this study was

6To assess whether participants used Alexa after clinical outcomes, we
used a one-sample Wilcoxon test. False discovery rate was applied, hence the
corrected p-values are compared against the significance level α = 0.017.
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health and well-being monitoring within smart homes to
support households with PLWD. We present a method to iden-
tify behavioural patterns, changes in those patterns, and the
corresponding time periods using conversational technology.
Specifically, we analysed 13 behavioural events (outlined in
Table I) related to in-home activity (e.g., motion, taking vitals)
and voice interactions with Alexa, both the trigger of a daily
well-being questionnaire and other topics of interest (listed in
Section III-D).

We first explored the use of Alexa in households with
PLWD over time by inspecting the prevalence of interactions
beyond the novelty phase (i.e., after the first three months
of usage). While a significant decrease in Alexa usage was
verified after the novelty phase across the cohort, some topics
of interest prevailed in users’ daily routines in the post-novelty
period. Moreover, results showed a significant decrease in
compliance with the daily well-being questionnaire after the
novelty phase. We argue this decline in engagement is likely
due to a perceived lack of utility and personalization of
interactions. One potential explanation is the fact that the
questionnaire participants completed throughout the data col-
lection period included the same set of questions each day. The
development of an adaptive questionnaire able to proactively
check-in for health and well-being self-assessments and follow
up on previous user responses represents a very promising area
of future research, which our ongoing work is addressing.

Next, we investigated the daily contexts in which Alexa
was triggered in the households by analysing activity se-
quences (i.e., sequences of ordered behavioural events) in
the 10-minute period preceding or following Alexa use (see
details in Section III-E). By integrating longitudinal in-home
activity data captured by IoT technologies and Alexa voice
interactions, our research demonstrated the technical capability
of identifying behavioural patterns. The analysis of activity
sequences led us to confirm the most common location of
Alexa in participants’ households. We presented a series of
case studies for selected participants, which reported different
behavioural patterns before user-initiated interactions with
Alexa and the corresponding time periods. Reported examples
include: a change of the Alexa device location to the patient’s
bedroom for a duration of six weeks, which was further con-
firmed by our design team as a response to evolving health and
caregiving needs; a pattern of taking vitals before completing
the well-being questionnaire in the morning over a period of
four weeks; and a consistent sequence of morning activity in
the kitchen, followed by triggering the Alexa questionnaire for
a period of 11 weeks. We further reported an example of a
detected change in household behaviour preceding the ques-
tionnaire trigger, represented in the similarity matrix as highly
dissimilar compared to the surrounding activity sequences (see
details in Section IV-B).

Moreover, we found end-users continued using Alexa in
the week following clinical outcomes, including after returning
home from hospitalisations. While the number of health events
analysed across the cohort prevents broader conclusions with
depth of clinical outcome, these preliminary findings indicate
an opportunity for proactive and personalized health and well-
being check-ins after the occurrence of health events.

Overall, although further investigation is needed with a
larger cohort over longer periods of time, these findings
offer a firm basis for the integration of conversational AI
technology in smart environments to monitor user behaviour
over time. We address design, deployment, engagement, data
acquisition, and analysis over 6+ months. Results indicate
promise to incorporate adaptive conversational agents in smart
home contexts. Ultimately, these systems could act on user
information captured by IoT technologies, such as nonverbal
indicators of physical or mental state, by directly verifying
symptoms with end-users.

B. Promise of Conversational AI in Digital Health Monitoring

We believe conversational agents should be inherently in-
tegrated with the living environment for a direct impact in
supporting ageing and dementia care at home. If well incorpo-
rated in the home context, including integration with IoT tech-
nologies, conversational agents could map and learn common
behavioural patterns and act on flagged changes in household
activities by initiating automated dialogues. Conversational
technology could, for instance, directly query users to verify
symptoms or mental state, encourage behavioural changes or
provide personalized assistance, such as suggesting an activity
or a drink for hydration. This provides a strong foundation for
the verification of changes in health and behaviour captured
by IoT technologies. Conversational agents could ultimately
offer verbal support in the event of perceived agitation or con-
fusion and promptly notify relevant stakeholders, which may
help mitigate further deterioration through early intervention.
Furthermore, more bespoke and engaging interactions could
be targeted based on end-users’ topics of interest, such as
suggesting entertainment activities, pointing out the time of a
favourite television programme, or reporting news of interest.

We envision conversational agents playing an instrumental
role in proactive and personalised dementia care. Particularly,
conversational agents hold promise to: 1) administer adaptive
questionnaires to verify symptoms of deterioration captured by
changes in household activity, 2) proactively query users for
self-assessments of health and well-being after the occurrence
of specific clinical events, 3) trigger automated alerts to inform
healthcare professionals and relevant stakeholders, facilitating
timely interventions.

C. Limitations

The current sample size limits broader conclusions with
depth of clinical outcome or related to the effect of different
demographics in the data collected. Nevertheless, the depth
of longitudinal data combined with the unique smart home
data collected from households with PLWD enables us to
scope our analysis and demonstrate the technical capability
to identify behavioural patterns. While a larger sample size
will be required to apply these findings to a wider and more
diverse population, our study demonstrates the veracity of
information gathering and analysis by combining voice with
in-home monitoring data. To the best of our knowledge, no
study to date has combined interactions with conversational
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AI with continuous in-home monitoring data, specifically
targeting support of older adults and PLWD.

The use of in-home monitoring technologies in real-world
evaluation studies poses considerable challenges. For this
study, participants needed to have a range of monitoring tech-
nologies and an additional interactive device in their homes.
One major drawback identified relates to end-users’ ethical
concerns around personal voice data gathering, which limited
the number of participants willing to incorporate Alexa in their
homes. While monitoring systems and automated interventions
hold very strong promise to improve health and well-being,
if not designed by end-user involvement and engagement,
they can be perceived as overly complex or intrusive, aside
from the associated concerns around data privacy and pro-
tection. Furthermore, ensuring long-term acceptability and
sustained engagement with conversational technology remains
a significant challenge, particularly for older populations with
cognitive impairment. These challenges, as discussed in this
study, must be addressed in the earliest stages of the design,
recruitment, and technology deployment cycle with close end-
user feedback to ensure that the technology infrastructure
remains non-invasive and privacy aware.

The use of commercial smart speakers brings inherent
limitations, such as the 8-second window restriction for the
user to respond to Alexa. This limits the applicability of
larger-scale models, such as large language models (LLMs),
in identifying potential indicators of behavioural changes or
cognitive decline through acoustic and linguistic features.

Another limitation to consider is the need for ground truth.
Obtaining ground truth is a complex challenge as it requires
finding an appropriate balance to have sufficient training
data to validate prediction models or identified behavioural
patterns while avoiding intrusion into people’s privacy. We are
addressing this in our ongoing research with people affected
by dementia through user-centred design methods, including
user workshops, allowing us to understand their needs, lived
experiences, perceived benefits and concerns while iteratively
refining our study design.

D. Future Work

For real-world translation and scalability in smart living
environments, we recommend future research on conversa-
tional agents aimed at supporting target populations to address
intelligent adaptation of interactions, including automated
questionnaires. This should account for historical user re-
sponses concerning subjective perceptions of health and well-
being, individual cognitive abilities, and detected changes from
routine behaviour at home. The behavioural analysis findings
presented in this study could be incorporated into automated
and personalized conversations (e.g., prompting users about
changes in behaviour) to obtain medically relevant data and
sustain user engagement.

Future work could address end-user long-term engagement
with conversational AI technology. While in general partici-
pants used Alexa for long periods of time (note the total days
of data collection varied across participants, as outlined in
Table II), there was an overall decrease in usage over time,

particularly in the post-novelty phase. We believe this is likely
due to a perceived lack of utility and adaptation of interactions.
We argue that to effectively engage with and support the well-
being of target populations in smart environments, conversa-
tional technology should be: 1) easy to use, 2) adequately
integrated with the environment to proactively respond to
contextual cues and provide personalized support, 3) adapt to
individual needs, preferences, and cognitive abilities over time,
4) promote the autonomy of the carer, so they can undertake
their caring tasks while still benefiting from forms of relief,
and 5) facilitate meaningful human connections (e.g., between
PLWD, carers, and clinicians).

Furthermore, collecting larger datasets across wider and
more diverse populations represents a very promising area of
future work, particularly to uncover what type of real-world
use cases can be effectively addressed in smart environments
from both user benefit and clinical perspectives. Key use
cases we identify for future investigation include: 1) tracking
mental health and cognitive decline from the use of language
when interacting with conversational AI, and 2) assessing
neuropsychiatric symptoms such as the risk of agitation and
predicting health outcomes from changes in the signature of
home activity. In our study, we have analysed in-home activity
data at the household level. This could be extended to a
more individualized and personalized approach. However, in
instances where multiple individuals (e.g., visitors at home)
interact with Alexa, the analysis of activity patterns may be
biased. Speaker recognition techniques could help address
this issue. Additionally, future work could investigate feature
engineering with various parameters of regular interactions
with conversational AI, such as their frequency, time of day,
changes in vocabulary usage, or sentiment in user utterances,
to train ML models towards predicting clinical outcomes.

VI. CONCLUSION

With speech and language being natural interaction modal-
ities, conversational agents are promising tools for integration
into smart environments to provide insights into users’ behav-
ior over time. Yet, the integration of conversational technology
in smart homes to trace household behaviour, identify patterns
or changes in routine, and trigger health-related alerts remains
largely untapped. We introduced an infrastructure combining
in-home activity data with voice interactions using conver-
sational technology to trace household behaviour in smart
environments. Our longitudinal data collection spanned 3103
person-days across a unique cohort of 14 households with
PLWD. We investigated sustained engagement with Alexa
and found a significant decrease in usage after the novelty
phase across the cohort. We argue this is likely due to a
perceived lack of utility and personalization of interactions
and further propose future directions to address current bar-
riers inhibiting longer-term user engagement and scalability
in smart environments. Our results demonstrated technical
capability in establishing behavioural patterns, changes in
those patterns and the corresponding time periods using con-
versational technology. We offer the approach as a basis to
personalize future interactions. Moreover, results revealed that

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3290833

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



INTERNET OF THINGS JOURNAL, VOL. X, NO. X 14

participants continued using Alexa following clinical events,
which suggests a future opportunity to proactively initiate
conversations to monitor health and well-being.

In conclusion, we believe the adequate integration of con-
versational technology in smart environments – including
smart homes with PLWD – holds very strong promise in
digital health monitoring. Key to realizing this potential is
the development of adaptive AI that can direct conversations
to automatically query changes in household behaviour and
user health, as captured by IoT technologies and remote
health monitoring devices. Such systems could encourage
behaviour through verbal prompts and suggestions tailored
to the changing needs of end-users, as well as trigger alerts
that inform healthcare professionals and relevant stakeholders
for timely interventions. We are unaware of other works
with a comparable longitudinal depth of analysis and number
of households with PLWD. Plans for longer-term evaluation
studies across a larger and more diverse cohort, addressing
adaptive questionnaires and proactive interactions based on
environmental output, are underway.
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[42] M. Sepesy Maučec and G. Donaj, “Discovering daily activity patterns
from sensor data sequences and activity sequences,” Sensors, vol. 21,
no. 20, p. 6920, 2021.

[43] K. A. Alaghbari, M. H. M. Saad, A. Hussain, and M. R. Alam,
“Activities recognition, anomaly detection and next activity prediction
based on neural networks in smart homes,” IEEE Access, vol. 10, pp.
28 219–28 232, 2022.

[44] J. Yin, Q. Zhang, and M. Karunanithi, “Unsupervised daily routine and
activity discovery in smart homes,” in 2015 37th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC). IEEE, 2015, pp. 5497–5500.

[45] S. Deep, X. Zheng, C. Karmakar, D. Yu, L. G. Hamey, and J. Jin, “A
survey on anomalous behavior detection for elderly care using dense-
sensing networks,” IEEE Communications Surveys & Tutorials, vol. 22,
no. 1, pp. 352–370, 2019.

[46] D. Arifoglu and A. Bouchachia, “Detection of abnormal behaviour
for dementia sufferers using convolutional neural networks,” Artificial
intelligence in medicine, vol. 94, pp. 88–95, 2019.

[47] ——, “Activity recognition and abnormal behaviour detection with
recurrent neural networks,” Procedia Computer Science, vol. 110, pp.
86–93, 2017.

[48] N. Camp, M. Lewis, K. Hunter, J. Johnston, M. Zecca, A. Di Nuovo,
and D. Magistro, “Technology used to recognize activities of daily
living in community-dwelling older adults,” International Journal of
Environmental Research and Public Health, vol. 18, no. 1, p. 163, 2021.

[49] P. Novitzky, A. F. Smeaton, C. Chen, K. Irving, T. Jacquemard,
F. O’Brolcháin, D. O’Mathúna, and B. Gordijn, “A review of contem-
porary work on the ethics of ambient assisted living technologies for
people with dementia,” Science and engineering ethics, vol. 21, no. 3,
pp. 707–765, 2015.

[50] G. Chimamiwa, A. Giaretta, M. Alirezaie, F. Pecora, and A. Loutfi, “Are
smart homes adequate for older adults with dementia?” Sensors, vol. 22,
no. 11, p. 4254, 2022.

[51] S. Alkhatib, J. Waycott, G. Buchanan, and R. Bosua, “Privacy and the
internet of things (iot) monitoring solutions for older adults: A review,”
Connecting the System to Enhance the Practitioner and Consumer
Experience in Healthcare, pp. 8–14, 2018.

[52] F. Tiersen, P. Batey, M. J. Harrison, L. Naar, A.-I. Serban, S. J. Daniels,
R. A. Calvo et al., “Smart home sensing and monitoring in households
with dementia: user-centered design approach,” JMIR aging, vol. 4,
no. 3, p. e27047, 2021.

[53] J. Lee and N. Melo, “Habit representation based on activity recognition,”
Sensors, vol. 20, no. 7, p. 1928, 2020.

[54] L. Meng, C. Miao, and C. Leung, “Towards online and personalized
daily activity recognition, habit modeling, and anomaly detection for
the solitary elderly through unobtrusive sensing,” Multimedia Tools and
Applications, vol. 76, no. 8, pp. 10 779–10 799, 2017.

[55] D. Zekri, T. Delot, M. Thilliez, S. Lecomte, and M. Desertot, “A
framework for detecting and analyzing behavior changes of elderly
people over time using learning techniques,” Sensors, vol. 20, no. 24,
p. 7112, 2020.

[56] D. J. Cook, M. Schmitter-Edgecombe, and P. Dawadi, “Analyzing ac-
tivity behavior and movement in a naturalistic environment using smart
home techniques,” IEEE journal of biomedical and health informatics,
vol. 19, no. 6, pp. 1882–1892, 2015.
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APPENDIX

Supplementary Table 1 Silhouette score was used as a measure of coherence to compare different clustering methods; k denotes the
number of clusters used. The total number of utterances clustered accounts for the cohort of participants. Note a pre-trained language model
was applied to embed each utterance into a 768-dimensional vector as detailed in Section III-F.

Clustering Method Silhouette (k=16)
K-Means 0.3255
Hierarchical Clustering 0.317
Gaussian Mixture Models 0.3081
Spectral Clustering 0.3173
Total utterances 6965

Supplementary Table 2 Distribution of relevant topics in the morning (before 12:00), afternoon (between 12:00 and 17:00 exclusive)
and evening (from 17:00) slots for each participant, as highlighted in Section IV-A. The total counts of topic triggers are also shown for the
two periods analysed. Note that numbers in bold are the ones used to describe results.

Novelty period Post-novelty period
Participant ID Topic total mor (%) aft (%) eve (%) total mor (%) aft (%) eve (%)
P2 Weather 25 68 12 20 190 85.26 10.53 4.21
P2 Timers 1 0 100 0 216 53.7 41.2 5.09
P6 Entertainment 9 55.56 44.44 0 27 51.85 44.44 3.7
P6 Reminders/Time/Date 12 66.67 25 8.33 19 52.63 42.11 5.26
P12 Weather 12 75 16.67 8.33 8 62.5 12.5 25
P14 News 4 50 0 50 9 66.67 33.33 0

Supplementary Table 3 Supplementary information for each time period considered in Figure 7, including: the start and end dates; the
total number of weeks within the time period considered; the distribution of activity sequences in the morning, afternoon and evening slots;
distribution of sequences across different clusters both within and outside the specified time period, i.e., how the sequences are distributed
among clusters during the selected time period and in time frames outside of this period, respectively; the size of each cluster, i.e., how many
activity sequences belonged to that cluster. Note that numbers in bold are the ones used to describe results for each time period analysed in
Section IV-B.

Time Period Time Slot (%) Cluster Dist. in Time Period (%) Cluster Dist. out of Time Period (%)
ID Start date End date weeks mor aft eve cl1 cl2 cl3 cl4 cl1 cl2 cl3 cl4
X1 2022-04-03 2022-05-07 6 61.06 33.02 5.92 84.69 9.06 5.31 0.94 11.88 37.8 34.1 16.22
X2 2021-10-23 2021-11-13 4 94.74 5.26 0 5.56 16.67 77.78 NA 34.84 43.87 21.29 NA
X3 2021-11-09 2022-01-21 11 100 0 0 1.85 22.22 11.11 64.81 57.38 9.02 4.1 29.51
X4 2022-01-25 2022-04-07 11 100 0 0 75 1.79 1.79 21.43 24.17 18.33 8.33 49.17

Supplementary Table 4 Probability of each behavioural event for each cluster identified in the similarity matrix analysed in Figure 7a.
Behavioural event cl1 (%) cl2 (%) cl3 (%) cl4 (%)
Bed in 0 0.16 0 0
Bed out 0 0 0.1 0
Vitals 1.82 4.3 1.5 0.46
Bathroom 14 2.19 0.2 1.61
Bedroom 25.75 1.54 0.1 2.06
Hallway 12.84 2.35 0.6 1.15
Lounge 1.02 21.1 41.5 12.61
Kitchen 0.44 36.28 13.3 4.36
Back door 0 3.73 1.4 0
Front door 0.07 0.57 0.6 0
Random (Alexa) 17.51 1.22 12.6 50.46
Start (Alexa) 0 0.73 1 1.15
End (Alexa) 0 0.49 0.3 0.46
Cluster size 364 (32.97%) 313 (28.35%) 271 (24.55%) 156 (14.13%)
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Supplementary Table 5 Probability of each behavioural event for each cluster identified in the similarity matrix analysed in Figure 7b.
Behavioural event cl1 (%) cl2 (%) cl3 (%)
Bed in 0 0 0
Bed out 0 0 0
Vitals 5.45 5.28 47.87
Bathroom 1.36 0.7 1.06
Bedroom 0.45 0.35 1.6
Hallway 0.45 0.7 1.6
Lounge 61.82 36.27 19.68
Kitchen 13.18 49.3 16.49
Back door 1.36 1.06 0.53
Front door 0.45 0 1.06
Random (Alexa) 12.73 4.58 8.51
Start (Alexa) 0.45 0.35 0.53
End (Alexa) 2.27 1.41 1.06
Cluster size 55 (32.79%) 71 (41.04%) 47 (27.17%)

Supplementary Table 6 Probability of each behavioural event for each cluster identified in the similarity matrix analysed in Figure 7c.
Behavioural event cl1 (%) cl2 (%) cl3 (%) cl4 (%)
Bed in 0 0 0 0
Bed out 0 0 0 0
Vitals 2.11 46.74 9.09 0.35
Bathroom 1.06 0 0 0.7
Bedroom 2.11 0 4.55 0
Hallway 0 0 0 0
Lounge 50 43.48 27.27 89.08
Kitchen 38.73 1.09 4.55 3.87
Back door 2.46 1.09 6.82 1.76
Front door 0 0 0 0
Random (Alexa) 3.52 3.26 43.18 3.52
Start (Alexa) 0 0 2.27 0
End (Alexa) 0 4.35 2.27 0.7
Cluster size 71 (40.34%) 23 (13.07%) 11 (6.25%) 71 (40.34%)

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3290833

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


