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Artificial Intelligence (Al), a transformative technology with vast potential in the field of
healthcare, presents an array of opportunities for innovation, with the ability to transform
medical care from diagnosis to treatment and patient monitoring [1,2]. However, one of the
main concerns about Al is the issue of data bias, which refers to the distortion or unfairness
that can arise from the data used to train or evaluate Al algorithms. Data bias can affect the
accuracy, validity and reliability of algorithms, and can lead to discriminatory or harmful out-
comes for certain groups of people [3]. Traditionally, data-driven initiatives have primarily
focused on building models and optimizing accuracy, often overlooking the fundamental issue
of data bias. This oversight has the potential to propagate algorithmic bias, reinforcing stereo-
types and structural inequities, particularly when deployed in real-world scenarios. Thus, it is
essential to recognize that many of the models published so far may inadvertently perpetuate
disparities present in data sources and patient populations [4].

In the medical field, AI’s most significant contribution lies in illuminating the critical role
of data in facilitating more objective, consistent, and immediate decision-making, while pro-
moting health equity [5]. However, healthcare data is powered by the medical knowledge sys-
tem, which includes influential stakeholders like research funders, universities, researchers,
and academic journals. These entities play pivotal roles in determining research priorities,
defining patient cohorts, providing platforms for research, and disseminating research find-
ings, whose collective influence significantly shapes the trajectory of medical research and our
understanding of health and diseases, thus contributing to the persistence of health disparities
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[6,7]. In this regard, a significant absence of diversity exists within the medical knowledge sys-
tem. For instance, more than half of the clinical datasets used for developing and validating AI
algorithms originated from either the United States (US) or China [8]. This limited representa-
tion of diverse patient cohorts may result in unbalanced model performance globally. Other
relevant differences within the Al landscape in clinical medicine include author nationality,
sex, clinical specialty, and expertise, further increasing the overall risk of AI bias. Additionally,
it’s crucial to underscore the implicit biases among healthcare professionals regarding race/
ethnicity, gender, age, weight, socio-economic status, mental illness, or disability, which paral-
lel those found in the general population [9,10]. Unconscious bias towards specific populations
may have an influence on clinical decisions, affecting the quality of care provided to patients
and perpetuating health disparities across stored medical records, databases, trained models
and Al-driven clinical decision-making processes. Overall, a few approaches and frameworks
have been considered to reduce Al bias in healthcare [11-13]. Going forward, a paramount
concern should be gaining a comprehensive understanding of the underlying data: exploring
the composition of patient cohorts, evaluating the accuracy of medical devices across diverse
patient groups, or examining monitoring practices in terms of factors like race, sex, socio-eco-
nomic status or language proficiency. Recognizing and addressing these discrepancies is vital
for improving the fairness, reliability, and equity of AI algorithms in healthcare, ultimately
bringing the Al-represented world closer to the reality we encounter.

The path to ensure Al benefits everyone may hinge on two crucial requirements. The first
entails the establishment of robust regulations and policies shaped through ongoing open dia-
logue, actively involving communities disproportionately affected by health disparities. The
second requirement is to foster an extensive dialogue concerning the methods and stakehold-
ers involved, by shifting the focus from "what’ to "'who’-those responsible for AI development
and deployment-and ’how’-ensuring transparency and accountability in responsible Al prac-
tices. In this article, we will explore the ’how’, with a specific focus on achieving transparency
and accountability in responsible Al practices, recognizing that building fair and reliable Al
algorithms in healthcare necessitates a thorough comprehension of data sources and their
inherent biases, while promoting collaboration and knowledge exchange through open-source
initiatives. In this context, the utilization of open data emerges as a crucial and potent
approach to mitigating data bias within the healthcare domain.

Open Access Data

In an information-driven world, data has become an extremely valuable resource. The growing
demand for access to information has led to a global movement towards openness and democ-
ratization of data [14]. In healthcare, Open Access Data refers to data that are available on plat-
forms that foster access to information sets for researchers through a transparent and
collaborative process [15]. This collaborative philosophy towards data provides researchers
with the opportunity to access and use information relevant to their studies, which drives sci-
entific progress and contributes to knowledge, while promoting the transparency of algorithms
and enabling the reproducibility of scientific results by other researchers.

Building fair and reliable AT algorithms in healthcare requires a deeper understanding of
the data sources and the potential biases they contain. In this regard, the use of open data rep-
resents a very important and effective way to address data bias in healthcare [12,16]. Open
data can help detect, correct and prevent data bias by enabling the scrutiny, audit and assess-
ment of algorithms by the scientific, media and civil societies. In addition, open data can also
foster innovation and collaboration in the development of more fair, transparent and account-
able algorithms that respect ethical principles and human rights. To this end, establishing a
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robust governance model is essential to ensure secure and ethical handling of open access
healthcare data, promoting transparency, reliability, and privacy protection in data-driven
research.

Governance models

To make open access data in healthcare both possible and secure, it is necessary to establish a
regulatory and ethical framework that governs its use and protects the privacy of the people
whose data are anonymized. In this context, open access data refers to information that is pub-
licly accessible but always subject to rules and standards that regulate its use. Through a rigor-
ous governance process, policies and procedures are defined to safeguard the privacy and
security of information, while at the same time promoting transparency and reliability in data
access. This governance process involves the multidisciplinary collaboration of various stake-
holders, including government agencies, academic institutions, privacy and data security
experts, and regulatory bodies. Data use agreements (DUAs) in open access repositories
emphasize the user’s commitment to act as a responsible researcher and the need for account-
ability in data usage. DUAs also state that access to the data should not be shared with third
parties and that its use should be limited to legitimate scientific research. Moreover, while the
organization sharing the data is legally obligated to take all technically possible measures to
prevent patient reidentification, the DUA also requires the user to commit not to attempt
patient reidentification. Caution is essential to avoid inadvertently disclosing patient sensitive
data in publications and communications, and if any information is found that may allow
identification, it should be reported immediately through the established channel to the
administrator. Finally, the user is encouraged to share any code associated with publications in
a public repository, thus fostering further scientific collaboration. In summary, an operational
governance model seeks to establish clear rules on who can access the data, how it can be used,
what restrictions can be applied and how patient privacy will be protected. Ultimately, this
aims to reduce the time between the request for data and the data analysis process itself.

Two main types of open data can be distinguished based on their level of accessibility:
intra-open access data and extra-open access data [17]. These distinctions are based on the
accessibility of the data and who can benefit from it. On the one hand, intra-open access data
refer to data that are available only to a particular group of users, either limited to a specific
geographic region, health center, or research project. This means that only those users belong-
ing to this group have access to the repositories. This category can be useful when dealing with
protected health information (PHI) or when there are legal restrictions or policies that limit
the disclosure of certain data. Nevertheless, it’s crucial to remember that even within the field
of intra-open access data, applying the principles of the aforementioned governance model
remains essential. On the other hand, extra-open access data encompasses information that is
globally available to the research community. In this regard, researchers worldwide have the
opportunity to request access and engage with the data, provided they consent to the DUA
and demonstrate a genuine and ethical research purpose. Normally, they should also have a
recognized institutional affiliation, a background in health research, and have completed a
comprehensive research ethics training course.

For publicly accessible databases, particular attention must be given to patient privacy
before data sharing, facilitated by a strong regulatory framework. Health datasets must
undergo robust deidentification processes to erase any traces of PHI and to minimize the risk
of reidentification. While achieving total data anonymization may not always be possible, and
concerns about the security of shared data remain, the drawbacks of hindering healthcare
progress through insights from data and restricting medical innovations from the application
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of Al on publicly available datasets far surpass the risks associated with the potential reidentifi-
cation of an individual patient [18]. Overall, the European Union (EU) and US differ in their
approach to health and data privacy legislation, with the General Data Protection Regulation
(GDPR) in the EU and the Health Insurance Portability and Accountability Act (HIPAA) in
the US playing central roles [19]. While both aim to ensure robust data protection and provide
individuals with control over their data, they vary in scope and approach. Specifically, HIPAA
is tailored to the healthcare sector and thus focuses solely on health information, whereas
GDPR addresses a wider range of personal data across industries. Consequently, HIPAA’s
specificity and less ambiguous provisions, compared to GDPR’s broader approach, facilitates a
more clear, direct and precise implementation of security measures, enhancing the protection
of health information.

The Open Data philosophy thus presents itself as a catalyst for interdisciplinary collabora-
tion and the creation of integrated solutions that have a real impact on health, by allowing the
development of more fair and transparent algorithms, and the reproducibility of results by the
scientific community.

FAIR principles

In the context of publicly available health data repositories, it is important to highlight the
FAIR principles (Findable, Accessible, Interoperable, and Reusable) that promote the effective
and responsible use of data. These principles were developed by a group of experts and inter-
national organizations that seek to promote the management and sharing of data in an open
and accessible manner [20].

First, data must be "Findable", meaning that they must have clear and descriptive docu-
mentation that facilitates their discovery and location. Ultimately, data findability translates
into ensuring that resources are easily discovered and accessible by those interested in using
them for knowledge generation and informed decision-making. Secondly, data must be
"Accessible", which implies that any interested person can interact directly with them. How-
ever, when dealing with PHI, additional accessibility restrictions need to be implemented
due to the confidential nature of the information. As highlighted earlier, these restrictions
may include the need to obtain special authorizations or permissions, to comply with ethical
requirements, legal requirements and DUAs, as well as to establish security protocols to
protect patient privacy. It is critical that these security measures are implemented in a man-
ner that does not compromise the operability of the data access time. Thirdly, data must be
"Interoperable”, which means that they must be structured in such a way that they can be
combined and used in conjunction with other datasets. This implies the use of common
standards and formats that facilitate the integration and exchange of data between different
systems and applications. Finally, data must be "Reusable”, indicating that they must be pre-
pared and documented in such a way that they can be used in different contexts and by dif-
ferent users. This includes providing information on the terms of use, restrictions and
applicable licenses, as well as providing clear and complete documentation that allows the
reproduction of the results obtained from the data.

Hence, the FAIR principles offer a sturdy framework that guarantees the ethical and
responsible use of publicly available data, all while fostering transparency, collaboration, and
research progress. By adhering to these principles, one can bolster data reliability during utili-
zation, facilitate the discovery of novel insights, ease data accessibility, maximize its potential
for reuse, and promote the reproducibility of outcomes. This approach, in turn, cultivates a
culture of open and shared data to be leveraged by the entire healthcare community for count-
less medical applications.
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Application of open data in medical contexts

The potential of massive datasets analyzed with Big Data and Al tools is immense and their
impact on patient health is going to be paradigm-changing [2]. For instance, during the
COVID-19 pandemic, clinical data became a vital resource to improve our understanding of
the disease and facilitate more effective decision-making and treatments [21]. Using machine
learning techniques and deep learning models, researchers were able to more accurately pre-
dict patient outcomes and mortality, opening up new opportunities to deliver personalized
and optimized care [22,23]. While some models were primarily used for research purposes,
others found practical applications in clinical scenarios. A systematic review identified 66 Al
applications that performed a variety of diagnostic, prognostic, and triage functions in the clin-
ical management of COVID-19 [24]. In general, open innovation strategies during global
health crises such as the COVID-19 pandemic facilitate an ecosystem for multi-disciplinary
relationships, crowdsourcing and accelerated progress and innovation [25]. These advances
demonstrate the transformative power of open innovation and open data in healthcare and the
tangible benefits they hold for improving people’s quality of life in actual clinical settings.

Open access data repositories in clinical research play a pivotal role in providing a transpar-
ent, collaborative and operational platform to address a wide variety of clinical questions. Ulti-
mately, this approach leads to a model of coexistence of different types of repositories,
including pseudo-anonymized, anonymized, and synthetic data; these resources further
expand research possibilities and promote significant advances in the field of data science in
the clinical setting. There has been a significant increase in attention and acknowledgment of
open data initiatives within the healthcare sector. In this context, significant international ini-
tiatives in the field of healthcare open data are outlined.

MIMIC (Medical Information Mart in Intensive Care) is the most widely used clinical data-
base internationally, as a result of collaboration between Beth Israel Deaconess Medical Center
and the Massachusetts Institute of Technology. The MIMIC-IV version contains data on
approximately 300,000 patients between the years 2008 and 2022, of which more than 70,000
have been admitted to the Intensive Care Unit (ICU) [26].

eICU is a collaborative research database populated with data from a combination of multi-
ple critical care units across the continental US. The data in the collaborative database covers
patients admitted to critical care units in 2014 and 2015, with information from more than
200,000 ICU admissions [27].

AMDS was created by the Amsterdam University Hospital Consortium (Amsterdam UMC)
as the first open-access intensive care database within the EU containing deidentified health
data related to tens of thousands of admissions to European ICUs, including demographic
information, vital signs, laboratory tests, and medications [28].

The Dutch ICU Data Warehouse is a project initiated by the Amsterdam University Hospi-
tal Consortium (Amsterdam UMC), which comprises severe COVID-19 patient data collected
from more than 35 ICUs in the Netherlands [29].

HiRID is an open dataset containing information on 33,000 patients admitted to the
Department of Intensive Care Medicine of the University Hospital of Bern, Switzerland. This
project was promoted collaboratively with the Swiss Federal Institute of Technology (ETH)
Zirich [30].

COVID Data Save Lives is an anonymized multimodal database comprising medical data
from patients treated for the SARS-CoV-2 virus in Spanish private hospitals from the group
"HM Hospitales’. This clinical dataset compiles various interactions within the COVID-19 treat-
ment process, providing comprehensive details on diagnoses, treatments, admissions, ICU vis-
its, diagnostic imaging tests, laboratory results and discharges, among other records [31].
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OPEN DATA COVID is a secure and anonymized database provided by Spanish healthcare
company ’Sanitas’, offering data related to COVID-19 patients admitted to the company’s
medical centers for use by the scientific and academic community. This project is part of Sani-
tas Data4Good, Sanitas’ Open Data initiative that was created with the aim of contributing to
society through data, especially in the field of health and well-being [32].

CARMEN-I (Corpus of Anonymized Records for Medical information Extraction) is a proj-
ect created by the Hospital Clinic Barcelona involving the digitalization of medical records.
CARMEN-I is designed to be a publicly accessible anonymized health database with the pri-
mary goal of advancing technological development and AT applications in healthcare, by pro-
viding a structured information format suitable for leveraging Natural Language Processing
(NLP) technologies to automatically extract clinical information from the data [33].

These successful international open data initiatives represent a crucial foundation for the
development of open-source Al models in healthcare. The applications of Al utilizing open
healthcare databases are diverse, encompassing associations between exposures and outcomes
[34], predictive modeling [35-37], medical imaging diagnosis [38], clinical decision support
systems (CDSS) [39], NLP [40], and reinforcement learning [41]. Moreover, open databases
serve as valuable resources for external validation of locally trained algorithms and assessment
of performance metrics [42]. The wealth of clinical information amassed in open databases
provides a valuable resource for training and fine-tuning AI models. As open datasets continue
to grow, so does the potential for open-source AI models to enhance medical diagnosis, treat-
ment personalization, and clinical predictions.

Open access data platforms, both intra and extra, are presented as a guiding philosophy
that catalyzes collaboration and the exchange of clinical knowledge, allowing scientists, aca-
demics and experts from different areas to work together in the resolution of relevant covered
needs. Open data, along with the sharing of source code for analysis, cultivates an environment
that encourages collaborations among researchers of various backgrounds and expertise levels,
thereby maximizing the potential for new scientific discoveries and breakthroughs. Secure and
controlled access to data, coupled with optimized infrastructure and transparency in model
training, streamlines the hypothesis validation process and expedites the development of reli-
able algorithms.

Open-source Al ecosystem: A beacon of progress in healthcare

The future of Al appears promising, with significant attention being directed towards Large
Language Models (LLMs) since the launch of ChatGPT in November 2022 [43]. However,
closed-source AI models such as ChatGPT and other LLMs, primarily controlled by Big Tech
companies, lack transparency and allow limited accessibility to training datasets and source
code. These limitations can result in biased outcomes and perpetuate inequities [4,8]. In
response, the open-source Al ecosystem has emerged as an alternative solution, promoting a
more accessible, transparent, cost-effective and tunable framework by leveraging the collabo-
rative efforts and ideas generated worldwide [44]. In this scenario, open-source LLMs, such as
LLaMA (along with its fine-tuned versions Alpaca, Vicuna, and Wizard), Mistral, or SOLAR,
have allowed to drive innovations and advancements in AI and compete with closed-source
LLMs [45,46]. Therefore, the development of open-source Al tools emerges as an opportunity
for learning and collective development, surpassing the limitations of proprietary models in
terms of reproducibility and ethics [47]. In general, this approach fosters a more collaborative
mindset for the benefit of patients.

Specifically, several LLM tailored to the healthcare domain have been developed for medical
question answering [48], such as Med-PaLM 2, a proprietary LLM with medical domain-
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specific finetuning [49]; Biomistral, an open-source LLM using Mistral as foundation model
and further pre-trained on PubMed Central [50]; HuatuoGPT, an open-source patient-friendly
and doctor-like medical advice provider [51]; and Visual Med-Alpaca, an open-source bio-
medical LLM with visual capabilities [52]. Notably, Med-PaLM was the first Al model to sur-
pass the pass mark (>60%) in the US Medical Licensing Examination (USMLE) style
questions. However, while biomedical-focused LLMs have the innovative potential to democ-
ratize medical knowledge and enhance patient care, they still raise concerns regarding patient
privacy, validation issues, and ethical aspects such as misinformation and misuse [53]. Bias-
related limitations could be mitigated by enhancing the overall LLM development process,
including improvements in input data, model architectures, and harmful output detection,
along with the promotion of transparent frameworks through publicly available training data-
sets and open-source code.

Open-source Al technologies applied to healthcare present an opportunity to retrain these
large open models for addressing complex tasks in secure health system environments in
order to support clinicians in their decision-making. In this context, the use of open healthcare
data plays a key role. Through the secure sharing of clinical datasets, the adjustment of these
highly customizable models can take place, leading to improved prediction quality and foster-
ing algorithm transparency, collaboration and equity in healthcare. By retraining these models
in secure environments, the accuracy and efficacy of diagnostics, personalized treatments and
clinical predictions are enhanced, while ensuring equitable access to healthcare and preserving
the confidentiality of PHI.

Leveraging Open Data repositories: Navigating commercialization through
data use agreements

While open data repositories offer valuable resources for training algorithms, it’s essential to
recognize that open data doesn’t equate to unrestricted commercial use. The nuances of poten-
tial commercial use of trained algorithms hinge on DUAs and specific collaboration agree-
ments. Different licenses offer significant commercial freedoms, as detailed in Table 1, which
include the Public Domain Dedication and License (PDDL), the MIT License for Data, the
Apache License 2.0 for Data, and the Creative Commons License (CC0). However, others, like
the Attribution License (ODC-By) or the Open Database License (ODbL), both from Open
Data Commons, may impose medium-level restrictions, potentially affecting commercial use.
Despite potential restrictions outlined in DUAs and licenses, companies can still derive signifi-
cant benefits from utilizing open data for research and development, product validation, col-
laborations, market analysis, and operational efficiency enhancements. Moreover, companies
with dedicated research departments can indirectly benefit from open data repositories by
entering into specific collaboration agreements with data providers. This collaborative
approach fosters knowledge exchange between industry and open data providers, which can
pave the way to the collaborative development of innovative solutions tailored to market
needs. By adhering to rigorous ethical and security standards, companies can mitigate risks
and ensure the reliability of insights gleaned from open data sources.

Enhancing the use of healthcare data for research in Andalusia,
Spain

With 8.5 million inhabitants, Andalusia is the 30ths most populated region in Europe, surpass-
ing countries like Austria, the Netherlands or Belgium. A significant portion of Andalusia’s

population (around 80%), spanning various socioeconomic statuses, relies on public health-
care services [54]. Nevertheless, Andalusia possesses significant potential for clinical research
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Table 1. Degrees of commercialization freedom in data licensing.

License

MIT License for Data

Apache License 2.0 for Data

Creative Commons License (CCO0)

Public Domain Dedication and License
(PDDL) de Open Data Commons

GNU Lesser General Public License for
data (LGPL)

Creative Commons License (CC BY)

Attribution License (ODC-By) from
Open Data Commons

Open Database License (ODbL) from
Open Data Commons

Customized Licenses

Creative Commons Attribution-
NonCommercial (CC BY-NC)

Aladdin Free Public License (AFPL)

Description

It gives data providers the freedom to commercialize their datasets without any
obstacles. It allows them to share their data with others, enabling commercial use,
modification, and redistribution, all while ensuring that the provider’s rights are
respected. This license empowers data providers to leverage their data for
commercial purposes, fostering innovation and collaboration while maintaining a
level of flexibility and simplicity in licensing terms.

It enables data providers to freely commercialize their datasets without constraints.
It allows unrestricted use, modification, and distribution, fostering collaboration
and innovation while safeguarding provider rights.

It grants data providers complete freedom to commercialize their datasets without
any restrictions. It allows for the unrestricted use, modification, and distribution of
data, fostering collaboration and innovation while safeguarding provider rights.

It allows data providers to release their data into the public domain, making it
available for use without restrictions, including for commercial purposes. This
license waives all copyright and related rights that the data provider might have
over the dataset, allowing any user to freely use, modify, and share the data.

Common in software, it can be applied to data. It allows use within proprietary
applications if changes to the original LGPL data (or software) are shared under the
same license.

It allows use, distribution, modification, and building upon the work commercially,
with proper credit to the author.

It requires attribution when using the data, which may be a minor obstacle, but it
does not impose strong restrictions on commercial uses or creating derived
products, provided adequate recognition is given.

It is designed to allow users to freely share, modify, and use a database while
ensuring that any derivatives remain available under the same license. This license
is particularly beneficial from a commercialization perspective because it grants the
freedom to use the data commercially, but with the stipulation that any public use
of the database, or derivatives thereof, must remain freely available. This ensures
that businesses can commercially use and enhance the database, but must keep
derivatives open, promoting a cycle of continuous sharing and improvement.

Organizations create their own licenses for specific needs or restrictions on their
data. These can be very restrictive, limiting use to non-commercial purposes,
prohibiting derived databases without permission, or imposing specific conditions
for redistribution.

It explicitly restricts commercial use. However, it’s not typically recommended for
software due to its inability to address unique software distribution issues.
Nonetheless, some projects use it to limit commercial use or distribution

It does not restrict commercial use per se but prohibits the resale of the software. It
allows the software to be used in-house within a commercial enterprise. However, it
could cause potential legal complications and the likelihood that most software
distributions will avoid including programs under these licensesSoftware
Engineering Stack Exchange).

https://doi.org/10.1371/journal.pdig.0000599.t001

Commercialization freedom
established by data provider

High

High

High

High

Medium

Medium

Medium

Medium

Low

Low

and innovation, given its comprehensive dataset encompassing diverse socioeconomic sta-
tuses, health conditions, risk factors, and outcomes across a patient’s medical history spanning

more than two decades. Through collaborative analysis of Andalusian data, this resource

would serve as critical raw-material for addressing unmet needs identified by healthcare sys-
tem clinicians and decision-makers, enabling the enhancement of treatments, optimization of

diagnostics, and more efficient management of resources.

Through a human and technological infrastructure in massive data processing and Al the
Big Data Department, PMC-Fundacion Progreso y Salud (FPS), from the Andalusian Regional
Ministry of Health and Consumer Affairs, aims to facilitate the secondary use of Andalusian
data for R&I applications in health, clinical practice and management. By employing the
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philosophy of distributed open collaboration, the resilience of the system in the face of new
challenges is improved. To put all this data into value and given the size and complexity of the
data, a strategy based on five fundamental principles is being deployed: Security, Integration,
Operability, Collaboration and Knowledge. In this regard, ODACI (Andalusian Intensive Care
Open Data), PRAETORIA (Andalusian Platform for the Development of Clinical Decision
Support Systems) and EVIAS (Assessment and Validation of Artificial Intelligence in Health-
care) stand out as top-notch initiatives and frameworks leveraging the potential of Andalusian
healthcare data.

A potential Andalusian intra-open critical care data initiative, ODACI

ODACI, a Spanish acronym that stands for Andalusian Intensive Care Open Data, is a collabo-
rative open data healthcare initiative from Andalusian ICUs that, if deployed, could improve
diagnosis and optimize the treatment of patients through the development of AI algorithms.
The source data for ODACI could be Diraya, an Andalusian interoperable electronic medical
record storing information from almost 30 hospitals and more than 1,000 primary care cen-
ters, integrating data from an accumulated cohort of over 13 million people. ODACI would be
governed by the FAIR principles, which guarantee the effective and responsible use of open
data in healthcare. Through the opening of ODACI to the scientific community and under
strict data protection measures, this clinical database would follow in the footsteps of other
similar international open data initiatives that have enabled innovative healthcare improve-
ment through an optimized clinical decision-making procedure based on the application of
Big Data and Al analytical tools [55]. ODACT’s initiative has garnered support from the Anda-
lusian Society of Intensive Medicine and Coronary Units (SAMIUC) and the Platform of
Patient Organizations (POP). As of May 2024, efforts are primarily directed towards obtaining
the necessary authorizations. Being one of the first healthcare data repositories to emerge from
the public system, particularly in Andalusia, presents a significant challenge due to the absence
of precedents. Ensuring full compliance with legal, ethical, and security regulations is para-
mount. In line with this approach, ODACI would function as the primary data source for the
PRAETORIA platform. This combination perfectly exemplifies how open data drives health-
care innovation, enabling the development of efficient and transparent CDSS within the
framework of the PRAETORIA initiative.

A platform for the development of clinical decision support systems,
PRAETORIA

CDSS are technological tools designed to assist healthcare professionals in making informed,
evidence-based decisions that promote personalized medicine. These systems use algorithms
and computational models to analyze clinical data, such as medical records, diagnostic test
results or radiological imaging, with the aim of providing relevant recommendations. By com-
bining medical knowledge and patient information with the power of data processing, CDSS
can improve diagnostic accuracy, optimize treatment plans and help prevent medical errors.
In this context, the Andalusian Platform for the Development of Clinical Decision Support
Systems (PRAETORIA) has emerged as an opportunity to improve the quality of care, opti-
mize resource management and reduce costs in the Andalusian Public Health System (APHS).
PRAETORIA, as an initiative within the APHS, aims to train algorithms using ODACI as data
source, which provides accurate and updated patient information, facilitating the process of
informed decision-making by healthcare professionals in the diagnosis, treatment and follow-
up of patients. Regarding PRAETORIA, several projects are underway to develop CDSS, such
as the Horizon Europe-funded project IntelliLung [56], in which Andalusian researchers are
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participating. Among Andalusian healthcare data projects utilizing CDSS are those focused on
combating multi-resistant bacteria and improving healthcare delivery for patients affected by
COVID or inflammatory bowel disease, which are in the phase of retrospective validation as of
May 2024. Finally, these systems will be evaluated using the EVIAS framework, by addressing
concerns about Al-based healthcare technology assessment and patient safety.

A framework for the validation and assessment of Al in healthcare, EVIAS

The accelerated pace of innovation in the field of digital health technologies and the use of Al
pose challenges in terms of decision-making, assessment, and adoption of Al-based healthcare
technologies. As Al systems become more common in healthcare, concerns arise about patient
safety, generalizability of algorithms, and appropriate interpretation of results by clinicians. In
this regard, the EU AI Act, enacted in March 2024, represents the world’s first comprehensive
Al law. It aims to ensure safety, protect fundamental rights, and promote innovation in AI
technologies. In the healthcare sector, machine learning algorithms are likely to be classified as
high-risk AI systems and must comply with specific criteria related to transparency (auditabil-
ity, bias testing), explainability (data quality, traceability, human oversight), and data gover-
nance (data security, data privacy) [57]. Notably, public institutions deploying high-risk Al
systems will need to register them in a public EU database. In general, stakeholders will need
to adapt to this Al Regulation to foster a more fair, robust, and secure AI ecosystem.

A new framework called EVIAS (Spanish acronym for *Assessment and Validation of Arti-
ficial Intelligence in Healthcare’) is being developed in response to the need to validate and
evaluate Al-based health technologies created by both private companies and public research
institutions in the healthcare sector. This initiative was promoted by the FPS-Big Data Depart-
ment in collaboration with the FPS-Health Technology Assessment Area (in Spanish AETSA),
and the APHS-Technology Transfer Office (In Spanish OTT). The main objective of EVIAS
will be to guarantee the efficacy and added value of Al algorithms, as well as the safety of
deploying them in clinical practice. This, in turn, supports institutions in enhancing the quality
of their AI development. To achieve this, EVIAS consists of two main phases: the validation of
the algorithm using real-world data from the APHS through data science methodologies, and
the assessment of Al-based health technologies using Health Technology Assessment (HTA)
methods and processes. Consequently, EVIAS introduces a hybrid protocol that combines val-
idation methods utilizing data science tools with assessment criteria from HTA. This new vali-
dation/assessment protocol is being carried out in a detailed and comprehensive manner to
form a complete framework of procedures and methodologies through the analysis of different
healthcare databases initiatives, in order to achieve the best guarantees of efficacy and safety
for the algorithms that will support decisions on patient care. As part of this effort, the EVIAS
team is reviewing existing HTA approaches for Al-based health technologies, to identify
strengths and weaknesses, and develop innovative assessment approaches that go beyond the
current state of the art.

Within the ASSESS-DHT project, funded by Horizon Europe and supported by the Euro-
pean Commission, methods required to validate and assess Al-based health technologies are
being refined [58]. This collaborative effort involves academic experts, professionals from
HTA agencies, independent research organizations, and companies to propose and pilot an
assessment framework suitable for digital health technologies, including those leveraging Al
algorithms. FPS-based researchers will collaborate with international leaders to address chal-
lenges related to validating and assessing Al-based health technologies and other types of digi-
tal health technologies. This includes developing real-world validation methods for Al-based
algorithms using local data and establishing an HTA framework to evaluate digital health
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technologies, including Al-based ones. A comprehensive review of protocols endorsed by
HTA and regulatory agencies has been conducted, with publication slated throughout 2024.

In summary, the ODACI-PRAETORIA-EVIAS framework embodies an innovative and
necessary initiative that can achieve a significant improvement in the quality of care, effi-
ciency in the use of resources and potentially, in some cases, cost reductions. Starting with
open healthcare data within ODACI, Al algorithms would be trained and developed within
the PRAETORIA platform, facilitating the process of decision-making by healthcare profes-
sionals. Finally, these algorithms would be validated and evaluated with EVIAS to ensure
trustworthiness, safety and efficacy of prediction models, as well as to assess whether they
do actually offer an added value compared to current standard of care. Overall, this work-
flow promotes the generation of cutting-edge AI tools and valuable knowledge based on
open and transparent algorithms, which can be applied in daily medical practice. Ulti-
mately, this open data ecosystem would strengthen the potential for R&D in the field of
medicine and position Andalusia as a leader in leveraging data for health and driving signif-
icant advances in patient care.

Conclusion

Open access data represents a dynamic philosophy that not only fosters collaboration and
knowledge exchange within the healthcare field but also contributes to the advancement of
clinical research, hospital care and patient safety. By granting access to findable, accessible,
interoperable and reusable databases, open access promotes scientific progress and the devel-
opment of fair, transparent and reliable algorithms that drive the reproducibility of results
while reducing data bias. Through the implementation of robust governance models and
anonymization techniques, privacy risks are mitigated, ensuring that data access meets secu-
rity, ethics, and compliance standards. The tangible benefits of open data in healthcare
research are evidenced by successful international initiatives, which have led to better-
informed clinical decisions and enhanced patient outcomes. Moreover, the role of open-source
Al in healthcare, particularly the release of open large language models, demonstrates the
potential for transformative breakthroughs when open-source collaboration meets advanced
technology.

As we look to the future, open data frameworks in healthcare hold the promise of collabora-
tive innovation, personalized medicine and clinical progress. For instance, initiatives like
ODACI, PRAETORIA and EVIAS in Andalusia, Spain, exemplify the integration of data-
driven clinical decision support systems and Al assessment protocols within a potential open
data environment. Through the utilization of open access data and adherence to robust ethical
and security standards, these initiatives are poised to drive advancements in diagnostics, treat-
ment optimization and patient safety. In the midst of a rapidly evolving healthcare landscape,
the adoption of open access data as the raw material for AI-based health technologies stands as
a beacon of progress and health equity, ultimately contributing to a healthier population.

References

1. Bhattamisra SK, Banerjee P, Gupta P, Mayuren J, Patra S, Candasamy M. Atrtificial Intelligence in Phar-
maceutical and Healthcare Research. Big Data Cogn. Comput. 2023 Mar; 7(1):10. https://doi.org/10.
3390/bdcc7010010

2. Bekbolatova M, Mayer J, Ong CW, Toma M. Transformative Potential of Al in Healthcare: Definitions,
Applications, and Navigating the Ethical Landscape and Public Perspectives. Healthcare (Basel). 2024
Jan 5; 12(2):125. https://doi.org/10.3390/healthcare 12020125 PMID: 38255014

3. FloresL, Kim S, Young SD. Addressing bias in artificial intelligence for public health surveillance. J Med
Ethics. 2024 Feb 20; 50(3):190—4. https://doi.org/10.1136/jme-2022-108875 PMID: 37130756

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000599  September 16, 2024 11/14


https://doi.org/10.3390/bdcc7010010
https://doi.org/10.3390/bdcc7010010
https://doi.org/10.3390/healthcare12020125
http://www.ncbi.nlm.nih.gov/pubmed/38255014
https://doi.org/10.1136/jme-2022-108875
http://www.ncbi.nlm.nih.gov/pubmed/37130756
https://doi.org/10.1371/journal.pdig.0000599

PLOS DIGITAL HEALTH

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24,

Zack T, Lehman E, Suzgun M, Rodriguez JA, Celi LA, Gichoya J, et al. Assessing the potential of GPT-
4 to perpetuate racial and gender biases in health care: a model evaluation study. Lancet Digit Health.
2024 Jan; 6(1):e12-22. https://doi.org/10.1016/S2589-7500(23)00225-X PMID: 38123252

Garcia-Vidal C, Sanjuan G, Puerta-Alcalde P, Moreno-Garcia E, Soriano A. Artificial intelligence to sup-
port clinical decision-making processes. EBioMedicine. 2019 Aug; 46:27-9. https://doi.org/10.1016/j.
ebiom.2019.07.019 PMID: 31303500

Thelwall M, Simrick S, Viney |, Van den Besselaar P. What is research funding, how does it influence
research, and how is it recorded? Key dimensions of variation. Scientometrics. 128:6085—106. https:/
doi.org/10.1007/s11192-023-04836-w

Grill C. Involving stakeholders in research priority setting: a scoping review. Res Involv Engagem. 2021
Oct 29; 7(1):75. https://doi.org/10.1186/s40900-021-00318-6 PMID: 34715932

Celi LA, Cellini J, Charpignon ML, Dee EC, Dernoncourt F, Eber R, et al. Sources of bias in artificial
intelligence that perpetuate healthcare disparities—A global review. PLOS Digit Health. 2022 Mar 31; 1
(3):e0000022. https://doi.org/10.1371/journal.pdig.0000022 PMID: 36812532

FitzGerald C, Hurst S. Implicit bias in healthcare professionals: a systematic review. BMC Med Ethics.
2017 Mar 1; 18(1):19. https://doi.org/10.1186/s12910-017-0179-8 PMID: 28249596

Khanijahani A, lezadi S, Gholipour K, Azami-Aghdash S, Naghibi D. A systematic review of racial/ethnic
and socioeconomic disparities in COVID-19. Int J Equity Health. 2021 Nov 24; 20(1):248. https://doi.
org/10.1186/s12939-021-01582-4 PMID: 34819081

Abramoff MD, Tarver ME, Loyo-Berrios N, Truijillo S, Char D, Obermeyer Z, et al. Considerations for
addressing bias in artificial intelligence for health equity. NPJ Digit Med. 2023 Sep 12; 6(1):170. https://
doi.org/10.1038/s41746-023-00913-9 PMID: 37700029

Norori N, Hu Q, Aellen FM, Faraci FD, Tzovara A. Addressing bias in big data and Al for health care: A
call for open science. Patterns (N Y). 2021 Oct 8; 2(10):100347. https://doi.org/10.1016/j.patter.2021.
100347 PMID: 34693373

Castillo EG, Harris C. Directing Research Toward Health Equity: a Health Equity Research Impact
Assessment. J Gen Intern Med. 2021 Sep; 36(9):2803-8. https://doi.org/10.1007/s11606-021-06789-3
PMID: 33948804

European Commission [Internet]. European Health Data Space. 2024 [cited 2024 May 10]. Available
from: https://health.ec.europa.eu/ehealth-digital-health-and-care/european-health-data-space_en

Global Health Data [Internet]. Opening health data to the public. [cited 2024 May 8]. Available from:
https://globalhealthdata.org/opening-health-data-to-the-public/

World Economic Forum [Internet]. Open source data science: How to reduce bias in Al. 2022 Oct 14
[cited 2023 Oct 25]. Available from: https://www.weforum.org/agenda/2022/10/open-source-data-
science-bias-more-ethical-ai-technology/

BaHammam AS. Unlocking the Power of Health Datasets and Registries: The Need for Urgent Institu-
tional and National Ownership and Governance Regulations for Research Advancement. Journal of
Nature and Science of Medicine. 2023 Sep; 6(3):159-65. https://doi.org/10.4103/jnsm.jnsm_82_23

Seastedt KP, Schwab P, O’Brien Z, Wakida E, Herrera K, Marcelo PGF, et al. Global healthcare fair-
ness: We should be sharing more, not less, data. PLOS Digit Health. 2022 Oct 6; 1(10):e0000102.
https://doi.org/10.1371/journal.pdig.0000102 PMID: 36812599

Nikitin M. The Main Differences Between GDPR and HIPAA. ltirra. 2023 Feb 7 [cited 2024 Apr 15].
Available from: https://itirra.com/blog/the-main-differences-between-gdpr-and-hipaa/

Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, et al. The FAIR Guiding
Principles for scientific data management and stewardship. Sci Data. 2016 Mar 15; 3:160018. Erratum
in: Sci Data. 2019 Mar 19;6(1):6. https://doi.org/10.1038/sdata.2016.18 PMID: 26978244

Franklin JM, Lin KJ, Gatto NM, Rassen JA, Glynn RJ, Schneeweiss S. Real-World Evidence for
Assessing Pharmaceutical Treatments in the Context of COVID-19. Clin Pharmacol Ther. 2021 Apr;
109(4):816-28. https://doi.org/10.1002/cpt.2185 PMID: 33529354

Tulu TW, Wan TK, Chan CL, Wu CH, Woo PYM, Tseng CZS, et al. Machine learning-based prediction
of COVID-19 mortality using immunological and metabolic biomarkers. BMC Digit Health. 2023; 1(1):6.
https://doi.org/10.1186/s44247-022-00001-0 PMID: 38014372

Zakariaee SS, Naderi N, Ebrahimi M, Kazemi-Arpanahi H. Comparing machine learning algorithms to
predict COVID-19 mortality using a dataset including chest computed tomography severity score data.
Sci Rep. 2023 Jul 13; 13(1):11343. https://doi.org/10.1038/s41598-023-38133-6 PMID: 37443373

Mann S, Berdahl CT, Baker L, Girosi F. Atrtificial intelligence applications used in the clinical response to
COVID-19: A scoping review. PLOS Digit Health. 2022 Oct 17; 1(10):e0000132. https://doi.org/10.
1371/journal.pdig.0000132 PMID: 36812557

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000599  September 16, 2024 12/14


https://doi.org/10.1016/S2589-7500%2823%2900225-X
http://www.ncbi.nlm.nih.gov/pubmed/38123252
https://doi.org/10.1016/j.ebiom.2019.07.019
https://doi.org/10.1016/j.ebiom.2019.07.019
http://www.ncbi.nlm.nih.gov/pubmed/31303500
https://doi.org/10.1007/s11192-023-04836-w
https://doi.org/10.1007/s11192-023-04836-w
https://doi.org/10.1186/s40900-021-00318-6
http://www.ncbi.nlm.nih.gov/pubmed/34715932
https://doi.org/10.1371/journal.pdig.0000022
http://www.ncbi.nlm.nih.gov/pubmed/36812532
https://doi.org/10.1186/s12910-017-0179-8
http://www.ncbi.nlm.nih.gov/pubmed/28249596
https://doi.org/10.1186/s12939-021-01582-4
https://doi.org/10.1186/s12939-021-01582-4
http://www.ncbi.nlm.nih.gov/pubmed/34819081
https://doi.org/10.1038/s41746-023-00913-9
https://doi.org/10.1038/s41746-023-00913-9
http://www.ncbi.nlm.nih.gov/pubmed/37700029
https://doi.org/10.1016/j.patter.2021.100347
https://doi.org/10.1016/j.patter.2021.100347
http://www.ncbi.nlm.nih.gov/pubmed/34693373
https://doi.org/10.1007/s11606-021-06789-3
http://www.ncbi.nlm.nih.gov/pubmed/33948804
https://health.ec.europa.eu/ehealth-digital-health-and-care/european-health-data-space_en
https://globalhealthdata.org/opening-health-data-to-the-public/
https://www.weforum.org/agenda/2022/10/open-source-data-science-bias-more-ethical-ai-technology/
https://www.weforum.org/agenda/2022/10/open-source-data-science-bias-more-ethical-ai-technology/
https://doi.org/10.4103/jnsm.jnsm%5F82%5F23
https://doi.org/10.1371/journal.pdig.0000102
http://www.ncbi.nlm.nih.gov/pubmed/36812599
https://itirra.com/blog/the-main-differences-between-gdpr-and-hipaa/
https://doi.org/10.1038/sdata.2016.18
http://www.ncbi.nlm.nih.gov/pubmed/26978244
https://doi.org/10.1002/cpt.2185
http://www.ncbi.nlm.nih.gov/pubmed/33529354
https://doi.org/10.1186/s44247-022-00001-0
http://www.ncbi.nlm.nih.gov/pubmed/38014372
https://doi.org/10.1038/s41598-023-38133-6
http://www.ncbi.nlm.nih.gov/pubmed/37443373
https://doi.org/10.1371/journal.pdig.0000132
https://doi.org/10.1371/journal.pdig.0000132
http://www.ncbi.nlm.nih.gov/pubmed/36812557
https://doi.org/10.1371/journal.pdig.0000599

PLOS DIGITAL HEALTH

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42,

Liu Z, Shi Y, Yang B. Open Innovation in Times of Crisis: An Overview of the Healthcare Sector in
Response to the COVID-19 Pandemic. J. Open Innov. Technol. Mark. Complex.2022; 8(1):21. https://
doi.org/10.3390/joitmc8010021

Johnson AEW, Bulgarelli L, Shen L, Gayles A, Shammout A, Horng S, et al. MIMIC-IV, a freely accessi-
ble electronic health record dataset. Sci Data. 2023 Jan 3; 10(1):1. https://doi.org/10.1038/s41597-022-
01899-x PMID: 36596836

Pollard TJ, Johnson AEW, Raffa JD, Celi LA, Mark RG, Badawi O. The elCU Collaborative Research
Database, a freely available multi-center database for critical care research. Sci Data. 2018 Sep 11;
5:180178. https://doi.org/10.1038/sdata.2018.178 PMID: 30204154

Thoral PJ, Peppink JM, Driessen RH, Sijbrands EJG, Kompanje EJO, Kaplan L, et al. Sharing ICU
Patient Data Responsibly Under the Society of Critical Care Medicine/European Society of Intensive
Care Medicine Joint Data Science Collaboration: The Amsterdam University Medical Centers Database
(AmsterdamUMCdb) Example. Crit Care Med. 2021 Jun 1; 49(6):e563-77. https://doi.org/10.1097/
CCM.0000000000004916 PMID: 33625129

Fleuren LM, Dam TA, Tonutti M, de Bruin DP, Lalisang RCA, Gommers D, et al. The Dutch Data Ware-
house, a multicenter and full-admission electronic health records database for critically ill COVID-19
patients. Crit Care. 2021 Aug 23; 25(1):304. https://doi.org/10.1186/s13054-021-03733-z PMID:
34425864

Hyland SL, Faltys M, Hiser M, Lyu X, Gumbsch T, Esteban C, et al. Early prediction of circulatory failure
in the intensive care unit using machine learning. Nat Med. 2020 Mar; 26(3):364—73. https://doi.org/10.
1038/s41591-020-0789-4 PMID: 32152583

HM Hospitales [Internet]. COMUNICADO: COVID DATA SAVE LIVES. 2020 Apr 15 [cited 2024 May 8].
Available from: https://www.hmhospitales.com/prensa/notas-de-prensa/comunicado-covid-data-save-
lives

Sanitas [Internet]. OPEN DATA COVID. Sanitas Data4Good. 2022 [cited 2023 Oct 15]. Available from:
https://landing.sanitasweb.es/data/opendatacovid/english.html

Farre Maduell E, Lima-Lopez S, Frid SA, Conesa A, Asensio E, Lopez-Rueda A, et al. CARMEN-I: A
resource of anonymized electronic health records in Spanish and Catalan for training and testing NLP
tools. Physionet. 2024. https://doi.org/10.13026/x7ed-9r91

Tan DJ, Chen J, Zhou Y, Ong JSQ, Sin RJX, Bui TV, et al. Association of body temperature and mortal-
ity in critically ill patients: an observational study using two large databases. Eur J Med Res. 2024 Jan 6;
29(1):38. https://doi.org/10.1186/s40001-023-01616-3 PMID: 38184625

LiuW, Tao G, Zhang Y, Xiao W, Zhang J, Liu Y, et al. A Simple Weaning Model Based on Interpretable
Machine Learning Algorithm for Patients With Sepsis: A Research of MIMIC-IV and elCU Databases.
Front Med (Lausanne). 2022 Jan 18; 8:814566. https://doi.org/10.3389/fmed.2021.814566 PMID:
35118099

Yuan ZN, Xue YJ, Wang HJ, Qu SN, Huang CL, Wang H, et al. A nomogram for predicting hospital mor-
tality of critical ill patients with sepsis and cancer: a retrospective cohort study based on MIMIC-IV and
elCU-CRD. BMJ Open. 2023 Sep 11; 13(9):e072112. https://doi.org/10.1136/bmjopen-2023-072112
PMID: 37696627

Zhang G, Shao F, Yuan W, Wu J, Qi X, Gao J, et al. Predicting sepsis in-hospital mortality with machine
learning: a multi-center study using clinical and inflammatory biomarkers. Eur J Med Res. 2024 Mar 6;
29(1):156. https://doi.org/10.1186/s40001-024-01756-0 PMID: 38448999

Hsieh C, Nobre IB, Sousa SC, Ouyang C, Brereton M, Nascimento JC, et al. MDF-Net for abnormality
detection by fusing X-rays with clinical data. Sci Rep. 2023 Sep 23; 13(1):15873. https://doi.org/10.
1038/541598-023-41463-0 PMID: 37741833

Moazemi S, Vahdati S, Li J, Kalkhoff S, Castano LJV, Dewitz B, et al. Artificial intelligence for clinical
decision support for monitoring patients in cardiovascular ICUs: A systematic review. Front Med (Lau-
sanne). 2023 Mar 31; 10:1109411. https://doi.org/10.3389/fmed.2023.1109411 PMID: 37064042

Zandbiglari K, Hasanzadeh HR, Kotecha P, Sajdeya R, Goodin AJ, Jiao T, et al. A Natural Language
Processing Algorithm for Classifying Suicidal Behaviors in Alzheimer’s Disease and Related Dementia
Patients: Development and Validation Using Electronic Health Records Data. medRxiv [Preprint]. 2023
[cited 2024 May 8]. Available from: https://www.medrxiv.org/content/10.1101/2023.07.21.23292976
PMID: 37546764

Peine A, Hallawa A, Bickenbach J, Dartmann G, Fazlic LB, Schmeink A, et al. Development and valida-
tion of a reinforcement learning algorithm to dynamically optimize mechanical ventilation in critical care.
NPJ Digit Med. 2021 Feb 19; 4(1):32. https://doi.org/10.1038/s41746-021-00388-6 PMID: 33608661

Lim L, Gim U, Cho K, Yoo D, Ryu HG, Lee HC. Real-time machine learning model to predict short-term
mortality in critically ill patients: development and international validation. Crit Care. 2024 Mar 14; 28
(1):76. https://doi.org/10.1186/s13054-024-04866-7 PMID: 38486247

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000599  September 16, 2024 13/14


https://doi.org/10.3390/joitmc8010021
https://doi.org/10.3390/joitmc8010021
https://doi.org/10.1038/s41597-022-01899-x
https://doi.org/10.1038/s41597-022-01899-x
http://www.ncbi.nlm.nih.gov/pubmed/36596836
https://doi.org/10.1038/sdata.2018.178
http://www.ncbi.nlm.nih.gov/pubmed/30204154
https://doi.org/10.1097/CCM.0000000000004916
https://doi.org/10.1097/CCM.0000000000004916
http://www.ncbi.nlm.nih.gov/pubmed/33625129
https://doi.org/10.1186/s13054-021-03733-z
http://www.ncbi.nlm.nih.gov/pubmed/34425864
https://doi.org/10.1038/s41591-020-0789-4
https://doi.org/10.1038/s41591-020-0789-4
http://www.ncbi.nlm.nih.gov/pubmed/32152583
https://www.hmhospitales.com/prensa/notas-de-prensa/comunicado-covid-data-save-lives
https://www.hmhospitales.com/prensa/notas-de-prensa/comunicado-covid-data-save-lives
https://landing.sanitasweb.es/data/opendatacovid/english.html
https://doi.org/10.13026/x7ed-9r91
https://doi.org/10.1186/s40001-023-01616-3
http://www.ncbi.nlm.nih.gov/pubmed/38184625
https://doi.org/10.3389/fmed.2021.814566
http://www.ncbi.nlm.nih.gov/pubmed/35118099
https://doi.org/10.1136/bmjopen-2023-072112
http://www.ncbi.nlm.nih.gov/pubmed/37696627
https://doi.org/10.1186/s40001-024-01756-0
http://www.ncbi.nlm.nih.gov/pubmed/38448999
https://doi.org/10.1038/s41598-023-41463-0
https://doi.org/10.1038/s41598-023-41463-0
http://www.ncbi.nlm.nih.gov/pubmed/37741833
https://doi.org/10.3389/fmed.2023.1109411
http://www.ncbi.nlm.nih.gov/pubmed/37064042
https://www.medrxiv.org/content/10.1101/2023.07.21.23292976
http://www.ncbi.nlm.nih.gov/pubmed/37546764
https://doi.org/10.1038/s41746-021-00388-6
http://www.ncbi.nlm.nih.gov/pubmed/33608661
https://doi.org/10.1186/s13054-024-04866-7
http://www.ncbi.nlm.nih.gov/pubmed/38486247
https://doi.org/10.1371/journal.pdig.0000599

PLOS DIGITAL HEALTH

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

OpenAl [Internet]. Introducing ChatGPT. 2022 Nov 30 [cited 2024 May 8]. Available from: https://
openai.com/index/chatgpt

Naveed H, Khan AU, Qiu S, Sagib M, Anwar S, Usman M, et al. A Comprehensive Overview of Large
Language Models. arXiv:2307.06435v9 [Preprint]. 2024 [cited 2024 May 8]. Available from: http://arxiv.
org/abs/2307.06435

Deci [Internet]. Top Large Language Models Reshaping the Open-Source Arena. 2024 Mar 27 [cited
2024 May 8]. Available from: https://deci.ai/blog/list-of-large-language-models-in-open-source/

Zheng L, Sheng Y, Chiang WL, Zhang H, Gonzalez JE, Stoica |. Chatbot Arena: Benchmarking LLMs in
the Wild with Elo Ratings. LMSYS Org. 2023 May 3 [cited 2023 Oct 15]. Available from: https://Imsys.
org/blog/2023-05-03-arena

Spirling A. Why open-source generative Al models are an ethical way forward for science. Nature. 2023
Apr; 616(7957):413. https://doi.org/10.1038/d41586-023-01295-4 PMID: 37072520

He K, Mao R, LinQ, Ruan Y, Lan X, Feng M, et al. A Survey of Large Language Models for Healthcare:
from Data, Technology, and Applications to Accountability and Ethics. arXiv:2310.05694v1 [Preprint].
2023 [cited 2024 May 8]. Available from: http://arxiv.org/abs/2310.05694

Singhal K, Tu T, Gottweis J, Sayres R, Wulczyn E, Hou L, et al. Towards Expert-Level Medical Question
Answering with Large Language Models. arXiv:2305.09617v1 [Preprint]. 2023 [cited 2024 May 8]. Avalil-
able from: http://arxiv.org/abs/2305.09617

Labrak Y, Bazoge A, Morin E, Gourraud PA, Rouvier M, Dufour R. BioMistral: A Collection of Open-
Source Pretrained Large Language Models for Medical Domains. arXiv:2402.10373v1 [Preprint]. 2024
[cited 2024 May 8]. Available from: http://arxiv.org/abs/2402.10373

Zhang H, Chen J, Jiang F, Yu F, Chen Z, Chen G, et al. HuatuoGPT, Towards Taming Language Model
to Be a Doctor. Singapore. Association for Computational Linguistics. 2023. Findings of the Associa-
tion for Computational Linguistics: EMNLP 2023: 10859—10885. https://doi.org/10.18653/v1/2023.
findings-emnlp.725

Shu C, Chen B, Liu F, Fu Z, Shareghi E, Collier N. Visual Med-Alpaca: A Parameter-Efficient Biomedical

LLM with Visual Capabilities. University of Cambridge. [cited 2024 May 8]. Available from: https://
cambridgeltl.github.io/visual-med-alpaca/

Clusmann J, Kolbinger FR, Muti HS, Carrero ZI, Eckardt JN, Laleh NG, et al. The future landscape of
large language models in medicine. Commun Med (Lond). 2023 Oct 10; 3(1):141. https://doi.org/10.
1038/s43856-023-00370-1 PMID: 37816837

Martin S. La sanidad privada en Andalucia sigue su ascenso. Portal de Andalucia. 2021 Aug 1 [cited
2024 May 8]. Available from: https://portaldeandalucia.org/opinion/la-sanidad-privada-en-andalucia-
sigue-su-ascenso/

de Kok JWTM, de la Hoz MAA, de Jong Y, Brokke V, Elbers PWG, Thoral P, et al. A guide to sharing
open healthcare data under the General Data Protection Regulation. Sci Data. 2023 Jun 24; 10(1):404.
https://doi.org/10.1038/s41597-023-02256-2 PMID: 37355751

IntelliLung [Internet]. Intelligent Lung Support for Mechanically Ventilated Patients in the Intensive Care
Unit. 2023 [cited 2024 May 8]. Available from: https://intellilung-project.eu/

Price L. HealthTech Implications of the New EU Al Act. Healthcare Digital. 2024 Feb 5 [cited 2024 May
8]. Available from: https://www.healthcare.digital/single-post/healthtech-implications-of-the-new-eu-ai-
act-2024

ASSESS-DHT [Internet]. Development & harmonisation of methodologies for assessing digital health
technologies in Europe. 2024 [cited 2024 May 8]. Available from: https://assess-dht.eu/

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000599  September 16, 2024 14/14


https://openai.com/index/chatgpt
https://openai.com/index/chatgpt
http://arxiv.org/abs/2307.06435
http://arxiv.org/abs/2307.06435
https://deci.ai/blog/list-of-large-language-models-in-open-source/
https://lmsys.org/blog/2023-05-03-arena
https://lmsys.org/blog/2023-05-03-arena
https://doi.org/10.1038/d41586-023-01295-4
http://www.ncbi.nlm.nih.gov/pubmed/37072520
http://arxiv.org/abs/2310.05694
http://arxiv.org/abs/2305.09617
http://arxiv.org/abs/2402.10373
https://doi.org/10.18653/v1/2023.findings-emnlp.725
https://doi.org/10.18653/v1/2023.findings-emnlp.725
https://cambridgeltl.github.io/visual-med-alpaca/
https://cambridgeltl.github.io/visual-med-alpaca/
https://doi.org/10.1038/s43856-023-00370-1
https://doi.org/10.1038/s43856-023-00370-1
http://www.ncbi.nlm.nih.gov/pubmed/37816837
https://portaldeandalucia.org/opinion/la-sanidad-privada-en-andalucia-sigue-su-ascenso/
https://portaldeandalucia.org/opinion/la-sanidad-privada-en-andalucia-sigue-su-ascenso/
https://doi.org/10.1038/s41597-023-02256-2
http://www.ncbi.nlm.nih.gov/pubmed/37355751
https://intellilung-project.eu/
https://www.healthcare.digital/single-post/healthtech-implications-of-the-new-eu-ai-act-2024
https://www.healthcare.digital/single-post/healthtech-implications-of-the-new-eu-ai-act-2024
https://assess-dht.eu/
https://doi.org/10.1371/journal.pdig.0000599

